Adira Colton, Ryan N Halli, M Rho Ma, Tejaswi Nori, Lucas K Muller, Kieran J Barvenik, Mahima Srivastava, Bibek Ramdam, Sunandita Sarker, Eleonora Tubaldi, Peter Kofinas, Kinneret Rand-Yadin, Ryan D Sochol
{"title":"Geometric determinants of sinterless, low-temperature-processed 3D-nanoprinted glass.","authors":"Adira Colton, Ryan N Halli, M Rho Ma, Tejaswi Nori, Lucas K Muller, Kieran J Barvenik, Mahima Srivastava, Bibek Ramdam, Sunandita Sarker, Eleonora Tubaldi, Peter Kofinas, Kinneret Rand-Yadin, Ryan D Sochol","doi":"10.1038/s41378-025-00983-7","DOIUrl":null,"url":null,"abstract":"<p><p>Glass materials are essential for microsystems applications in fields ranging from optics and photonics to microfluidics and biomedicine, which has driven growing interest in additive manufacturing-or \"three-dimensional (3D) printing\"-to enable glass micro/nanotechnologies. Notably, the recent discovery that 3D-nanostructured fused silica glass components can be produced via \"two-photon direct laser writing (DLW)\" of hybrid organic-inorganic polyhedral oligomeric silsesquioxanes (POSS)-based resins holds unique promise, particularly due to the advantages of sinterless, low-temperature (i.e., 650 °C) post-processing. At present, however, it remains unknown how implementing such methodologies to 3D print larger glass microstructures (e.g., with ≥25-µm-thick features) affects critical material properties, such as the ultimate optical and mechanical characteristics. To address this knowledge gap, here we investigate DLW-printed feature size as a key determinant of the optical and mechanical properties of POSS-based fused silica glass microstructures. Experiments for DLW-printed microlenses reveal comparable optical transparency for initial thicknesses up to 40 µm, but increasing to 60 µm significantly reduces light transmission from 87.87 ± 1.18% to 63.57 ± 5.10%. Similarly, compressive loading studies for hollow glass cylindrical microstructures show consistent behavior for initial DLW-printed wall thicknesses up to 30 µm, but significant performance degradation beyond-e.g., Young's modulus decreasing from 251.6 ± 71.9 to 99.7 ± 63.9 MPa for the 30 to 40 µm cases, respectively. As an exemplar with relevance to biomedical microinjection applications, we harness this new knowledge to DLW-print POSS-based glass microneedle arrays (MNAs) and demonstrate their ability to penetrate into a medium not possible using standard polymer MNAs. In combination, this study establishes critical optical and mechanical benchmarks that underlie the utility of DLW 3D-printed POSS-based fused silica glass microstructures in emerging applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"145"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00983-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Glass materials are essential for microsystems applications in fields ranging from optics and photonics to microfluidics and biomedicine, which has driven growing interest in additive manufacturing-or "three-dimensional (3D) printing"-to enable glass micro/nanotechnologies. Notably, the recent discovery that 3D-nanostructured fused silica glass components can be produced via "two-photon direct laser writing (DLW)" of hybrid organic-inorganic polyhedral oligomeric silsesquioxanes (POSS)-based resins holds unique promise, particularly due to the advantages of sinterless, low-temperature (i.e., 650 °C) post-processing. At present, however, it remains unknown how implementing such methodologies to 3D print larger glass microstructures (e.g., with ≥25-µm-thick features) affects critical material properties, such as the ultimate optical and mechanical characteristics. To address this knowledge gap, here we investigate DLW-printed feature size as a key determinant of the optical and mechanical properties of POSS-based fused silica glass microstructures. Experiments for DLW-printed microlenses reveal comparable optical transparency for initial thicknesses up to 40 µm, but increasing to 60 µm significantly reduces light transmission from 87.87 ± 1.18% to 63.57 ± 5.10%. Similarly, compressive loading studies for hollow glass cylindrical microstructures show consistent behavior for initial DLW-printed wall thicknesses up to 30 µm, but significant performance degradation beyond-e.g., Young's modulus decreasing from 251.6 ± 71.9 to 99.7 ± 63.9 MPa for the 30 to 40 µm cases, respectively. As an exemplar with relevance to biomedical microinjection applications, we harness this new knowledge to DLW-print POSS-based glass microneedle arrays (MNAs) and demonstrate their ability to penetrate into a medium not possible using standard polymer MNAs. In combination, this study establishes critical optical and mechanical benchmarks that underlie the utility of DLW 3D-printed POSS-based fused silica glass microstructures in emerging applications.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.