Usha Nair, Ziqi Feng, Madhav Akauliya, Abigail G Esposito, Charles R Crain, Edward D Lamperti, Thavaleak Prum, John E Warner, Lisa Madungwe, Gordon A Dale, Julie Boucau, Gaurav D Gaiha, Meng Yuan, Ian A Wilson, Facundo D Batista
{"title":"In vivo antibody diversification targeting a conserved coronavirus epitope.","authors":"Usha Nair, Ziqi Feng, Madhav Akauliya, Abigail G Esposito, Charles R Crain, Edward D Lamperti, Thavaleak Prum, John E Warner, Lisa Madungwe, Gordon A Dale, Julie Boucau, Gaurav D Gaiha, Meng Yuan, Ian A Wilson, Facundo D Batista","doi":"10.1084/jem.20241563","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the use of human B cell receptor (BCR) knock-in mice for broadening antibody responses, we diversified CR3022, a monoclonal antibody (mAb) originally identified in a 2003 severe acute respiratory syndrome coronavirus (SARS-CoV) convalescent patient. This mAb targets a conserved epitope on the coronavirus receptor-binding domain (RBD). We took advantage of high- and low-affinity CR3022 BCR knock-in mice and immunized them with SARS-CoV-2 Wuhan RBD trimers to expand the breadth of these antibodies toward this virus. The resulting antibodies retained the ability to neutralize SARS-CoV and exhibited enhanced affinity and neutralization against the SARS-CoV-2 WA1/2020 strain, as well as the Delta (B.1.617.2) and Omicron KP.3 variants. They also showed broadened reactivity to two bat coronaviruses: WIV1 and, to a lesser potency, BtKY72. Structural analysis revealed key mutations that enhanced binding and neutralization, highlighting the importance of epitope accessibility and variant-specific conformations in antibody diversification. These findings demonstrate that human BCR-expressing mouse models can generate effective antibodies with broad neutralizing activity against viral epitopes.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 10","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241563","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the use of human B cell receptor (BCR) knock-in mice for broadening antibody responses, we diversified CR3022, a monoclonal antibody (mAb) originally identified in a 2003 severe acute respiratory syndrome coronavirus (SARS-CoV) convalescent patient. This mAb targets a conserved epitope on the coronavirus receptor-binding domain (RBD). We took advantage of high- and low-affinity CR3022 BCR knock-in mice and immunized them with SARS-CoV-2 Wuhan RBD trimers to expand the breadth of these antibodies toward this virus. The resulting antibodies retained the ability to neutralize SARS-CoV and exhibited enhanced affinity and neutralization against the SARS-CoV-2 WA1/2020 strain, as well as the Delta (B.1.617.2) and Omicron KP.3 variants. They also showed broadened reactivity to two bat coronaviruses: WIV1 and, to a lesser potency, BtKY72. Structural analysis revealed key mutations that enhanced binding and neutralization, highlighting the importance of epitope accessibility and variant-specific conformations in antibody diversification. These findings demonstrate that human BCR-expressing mouse models can generate effective antibodies with broad neutralizing activity against viral epitopes.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.