Connor J Powell, Hani D Singer, Ashley R Juarez, Ryan T Kim, Elane Kim, Duygu Payzin-Dogru, Aaron M Savage, Noah J Lopez, Kara Thornton, Steven J Blair, Adnan Abouelela, Anita Dittrich, Stuart G Akeson, Miten Jain, Jessica L Whited
{"title":"Pancreatic injury induces β-cell regeneration in axolotl.","authors":"Connor J Powell, Hani D Singer, Ashley R Juarez, Ryan T Kim, Elane Kim, Duygu Payzin-Dogru, Aaron M Savage, Noah J Lopez, Kara Thornton, Steven J Blair, Adnan Abouelela, Anita Dittrich, Stuart G Akeson, Miten Jain, Jessica L Whited","doi":"10.1002/dvdy.70060","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetes is a condition characterized by a loss of pancreatic β-cell function, which results in the dysregulation of insulin homeostasis. Using a partial pancreatectomy model in axolotl, we aimed to observe the pancreatic response to injury.</p><p><strong>Results: </strong>Here we show a comprehensive histological characterization of pancreatic islets in axolotl. Following pancreatic injury, no apparent blastema-like structure was observed. We found a significant, organ-wide increase in cellular proliferation post-resection in the pancreas compared to sham-operated controls. This proliferative response was most robust at the site of injury. Further, an increase in nuclear density was observed, suggesting compensatory congestion as a mechanism of regeneration. We found that β-cells actively contributed to the increased rates of proliferation upon injury. β-Cell proliferation manifested in increased β-cell mass in injured tissue at 2 weeks post-injury. At 4 weeks post-injury, we found organ-wide proliferation to be extinguished while proliferation at the injury site persisted, corresponding to pancreatic tissue recovery. Similarly, total β-cell mass was comparable to sham after 4 weeks.</p><p><strong>Conclusions: </strong>Our findings suggest a non-blastema-mediated regeneration process takes place in the pancreas, by which pancreatic resection induces whole-organ β-cell proliferation without the formation of a blastemal structure. This process is analogous to other models of compensatory congestion in axolotl.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/dvdy.70060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetes is a condition characterized by a loss of pancreatic β-cell function, which results in the dysregulation of insulin homeostasis. Using a partial pancreatectomy model in axolotl, we aimed to observe the pancreatic response to injury.
Results: Here we show a comprehensive histological characterization of pancreatic islets in axolotl. Following pancreatic injury, no apparent blastema-like structure was observed. We found a significant, organ-wide increase in cellular proliferation post-resection in the pancreas compared to sham-operated controls. This proliferative response was most robust at the site of injury. Further, an increase in nuclear density was observed, suggesting compensatory congestion as a mechanism of regeneration. We found that β-cells actively contributed to the increased rates of proliferation upon injury. β-Cell proliferation manifested in increased β-cell mass in injured tissue at 2 weeks post-injury. At 4 weeks post-injury, we found organ-wide proliferation to be extinguished while proliferation at the injury site persisted, corresponding to pancreatic tissue recovery. Similarly, total β-cell mass was comparable to sham after 4 weeks.
Conclusions: Our findings suggest a non-blastema-mediated regeneration process takes place in the pancreas, by which pancreatic resection induces whole-organ β-cell proliferation without the formation of a blastemal structure. This process is analogous to other models of compensatory congestion in axolotl.
期刊介绍:
Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.