{"title":"The Diagnostic Role and Potential Pharmacological Value of DDR1 in Pan-Cancer.","authors":"Yi Yu, Yonggang Tian, Dekui Zhang","doi":"10.2174/0115680266358586250617044509","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer remains a devastating global health burden. Despite the identification of numerous biological targets, effective therapeutic agents remain limited. As a highly promising novel target, the role of Discoid Domain Receptors (DDRs) in pan-cancer biology is still poorly characterized. Thus, this study aims to elucidate the regulatory mechanisms and diagnostic potential of DDR1 across different cancer types.</p><p><strong>Methods: </strong>Herein, we used UCSC, SangerBox, GEPIA, GSCA, and GeneMANIA online databases to analyze the expression and role of DDR1 in pan-cancer.</p><p><strong>Results: </strong>The expression levels of DDR1 showed significant differences in some tumour T, N, and M stages. Importantly, DDR1 expression was associated with clinical prognosis in five cancers. In addition, DDR1 was inversely correlated with most immune checkpoint pathways, immunomodulatory genes, and immune cell infiltration in a few cancers. Furthermore, in most cancers, DDR1 promotes cancer progression by promoting apoptosis, inhibiting cell cycle and EMT, activating hormone AR activity, activating PI3K/AKT pathway, RASMAPK pathway, and RTK pathway. Finally, we also found that the DDR1 gene was positively associated with stemness scores in most tumors.</p><p><strong>Conclusion: </strong>Our findings demonstrate that DDR1 exhibits diagnostic utility and holds promising translational potential as a therapeutic target across multiple cancer types.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266358586250617044509","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cancer remains a devastating global health burden. Despite the identification of numerous biological targets, effective therapeutic agents remain limited. As a highly promising novel target, the role of Discoid Domain Receptors (DDRs) in pan-cancer biology is still poorly characterized. Thus, this study aims to elucidate the regulatory mechanisms and diagnostic potential of DDR1 across different cancer types.
Methods: Herein, we used UCSC, SangerBox, GEPIA, GSCA, and GeneMANIA online databases to analyze the expression and role of DDR1 in pan-cancer.
Results: The expression levels of DDR1 showed significant differences in some tumour T, N, and M stages. Importantly, DDR1 expression was associated with clinical prognosis in five cancers. In addition, DDR1 was inversely correlated with most immune checkpoint pathways, immunomodulatory genes, and immune cell infiltration in a few cancers. Furthermore, in most cancers, DDR1 promotes cancer progression by promoting apoptosis, inhibiting cell cycle and EMT, activating hormone AR activity, activating PI3K/AKT pathway, RASMAPK pathway, and RTK pathway. Finally, we also found that the DDR1 gene was positively associated with stemness scores in most tumors.
Conclusion: Our findings demonstrate that DDR1 exhibits diagnostic utility and holds promising translational potential as a therapeutic target across multiple cancer types.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.