Bartosz Krawczyk, Alexandre Kudlinski, Robert T Murray, Simon R Schultz, Amanda J Foust, Timothy H Runcorn
{"title":"Two-photon microscopy using picosecond pulses from four-wave mixing in a Yb-doped photonic crystal fiber.","authors":"Bartosz Krawczyk, Alexandre Kudlinski, Robert T Murray, Simon R Schultz, Amanda J Foust, Timothy H Runcorn","doi":"10.1364/BOE.563581","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon microscopy (TPM) enables deep tissue imaging but requires excitation pulses that have a large product of average and peak power, typically supplied by femtosecond solid-state lasers. However, these lasers are bulky, and femtosecond pulses require careful dispersion management to avoid pulse broadening, particularly when delivery fibers are used. Here we present a compact, fiber-based picosecond laser source operating at 790 nm for TPM using an ytterbium-doped photonic crystal fiber (Yb-doped PCF). The Yb-doped PCF simultaneously amplifies 1064 nm input pulses and efficiently converts them to 790 nm via four-wave mixing, generating pulses with a peak power of up to ∼3.8 kW. The source has a variable repetition rate (1.48 MHz-14.78 MHz), enabling the two-photon excitation fluorescence signal to be maximized in the presence of excitation saturation. We benchmark our picosecond laser source against a femtosecond Ti:Sapphire laser for TPM of stained <i>Convallaria majalis</i> samples and demonstrate comparable fluorescence signal when the two-photon excitation conditions are matched.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 6","pages":"2327-2336"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.563581","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Two-photon microscopy (TPM) enables deep tissue imaging but requires excitation pulses that have a large product of average and peak power, typically supplied by femtosecond solid-state lasers. However, these lasers are bulky, and femtosecond pulses require careful dispersion management to avoid pulse broadening, particularly when delivery fibers are used. Here we present a compact, fiber-based picosecond laser source operating at 790 nm for TPM using an ytterbium-doped photonic crystal fiber (Yb-doped PCF). The Yb-doped PCF simultaneously amplifies 1064 nm input pulses and efficiently converts them to 790 nm via four-wave mixing, generating pulses with a peak power of up to ∼3.8 kW. The source has a variable repetition rate (1.48 MHz-14.78 MHz), enabling the two-photon excitation fluorescence signal to be maximized in the presence of excitation saturation. We benchmark our picosecond laser source against a femtosecond Ti:Sapphire laser for TPM of stained Convallaria majalis samples and demonstrate comparable fluorescence signal when the two-photon excitation conditions are matched.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.