{"title":"High-resolution quantitative phase imaging via vortex beam speckle illumination.","authors":"Shengqiang Zhong, Hongwei Zou, Chao Hou, Fan Yang, Kaibin Zeng, Yuhan Liu, Yongsheng Huang, Xiantao Jiang","doi":"10.1364/BOE.560024","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a vortex beam speckle imaging system for quantitative phase imaging (QPI) with high lateral resolution. By introducing vortex beams for non-diffracting speckle field regulation, the speckle size can be significantly reduced from 116.32 μm to 11.07 μm. With these advantages, the proposed imaging system has shown 1.52 folds of lateral resolution improvement compared to a traditional coherent imaging system. Furthermore, the intensity signal-to-noise ratio of the imaging system has also been improved from 13.26 dB to 30.62 dB. Transport-of-intensity equation (TIE) phase retrieval algorithms were applied to standard quantitative phase targets, and red blood cell samples were used to demonstrate the system's precise phase retrieval capability, indicating its potential applications for label-free, non-invasive biomedical imaging.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 6","pages":"2275-2282"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.560024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a vortex beam speckle imaging system for quantitative phase imaging (QPI) with high lateral resolution. By introducing vortex beams for non-diffracting speckle field regulation, the speckle size can be significantly reduced from 116.32 μm to 11.07 μm. With these advantages, the proposed imaging system has shown 1.52 folds of lateral resolution improvement compared to a traditional coherent imaging system. Furthermore, the intensity signal-to-noise ratio of the imaging system has also been improved from 13.26 dB to 30.62 dB. Transport-of-intensity equation (TIE) phase retrieval algorithms were applied to standard quantitative phase targets, and red blood cell samples were used to demonstrate the system's precise phase retrieval capability, indicating its potential applications for label-free, non-invasive biomedical imaging.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.