PCBP2 Promotes NRG4 mRNA Stability to Diminish Angiotensin II-Induced Hypertrophy, NLRP3 Inflammasome Activation, and Oxidative Stress of AC16 Cardiomyocytes.

IF 2.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yang Zhang, Yulong Liu, Yaling Wang
{"title":"PCBP2 Promotes NRG4 mRNA Stability to Diminish Angiotensin II-Induced Hypertrophy, NLRP3 Inflammasome Activation, and Oxidative Stress of AC16 Cardiomyocytes.","authors":"Yang Zhang, Yulong Liu, Yaling Wang","doi":"10.1007/s12013-025-01819-x","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial hypertrophy, a complex cardiovascular disorder, remains a significant challenge. NRG4 has shown protective effects against myocardial damage. Here, we clarified the role of NRG4 in angiotensin II (Ang II)-induced hypertrophy of AC16 cardiomyocytes. The Ang II-stimulated AC16 cell line was used as an in vitro model of myocardial hypertrophy. Immunofluorescence using an anti-α-actinin antibody was used to observe cell area and size. mRNA expression was detected by quantitative PCR, and protein levels were measured by immunoblot assay. ROS amount detection was performed by flow cytometry. The cell protein/DNA ratio and the levels of IL-1β, IL-18, MDA and SOD were tested using commercial kits. The relationship between PCBP2 and NRG4 mRNA was validated by luciferase, RNA immunoprecipitation (RIP), and mRNA stability assays. In Ang II-stimulated AC16 cells, PCBP2 and NRG4 were markedly downregulated. Increased NRG4 expression relieved Ang II-induced hypertrophy and fibrosis in AC16 cardiomyocytes. Moreover, NRG4 increase weakened NLRP3 inflammasome activation and oxidative stress in Ang II-stimulated AC16 cardiomyocytes. Mechanistically, PCBP2 stabilized NRG4 mRNA to increase NRG4 protein expression in Ang II-induced AC16 cardiomyocytes. NRG4 depletion counteracted the suppressive effects of PCBP2 upregulation on hypertrophy, NLRP3 inflammasome activation, and oxidative stress of Ang II-induced AC16 cardiomyocytes. Additionally, the PCBP2/NRG4 cascade regulated the AMPK/mTOR signaling pathway in Ang II-induced AC16 cardiomyocytes. Our data demonstrate that the previously uncharacterized PCBP2/NRG4 cascade attenuates Ang II-triggered hypertrophy, NLRP3 inflammasome activation, and oxidative stress of AC16 cardiomyocytes.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01819-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial hypertrophy, a complex cardiovascular disorder, remains a significant challenge. NRG4 has shown protective effects against myocardial damage. Here, we clarified the role of NRG4 in angiotensin II (Ang II)-induced hypertrophy of AC16 cardiomyocytes. The Ang II-stimulated AC16 cell line was used as an in vitro model of myocardial hypertrophy. Immunofluorescence using an anti-α-actinin antibody was used to observe cell area and size. mRNA expression was detected by quantitative PCR, and protein levels were measured by immunoblot assay. ROS amount detection was performed by flow cytometry. The cell protein/DNA ratio and the levels of IL-1β, IL-18, MDA and SOD were tested using commercial kits. The relationship between PCBP2 and NRG4 mRNA was validated by luciferase, RNA immunoprecipitation (RIP), and mRNA stability assays. In Ang II-stimulated AC16 cells, PCBP2 and NRG4 were markedly downregulated. Increased NRG4 expression relieved Ang II-induced hypertrophy and fibrosis in AC16 cardiomyocytes. Moreover, NRG4 increase weakened NLRP3 inflammasome activation and oxidative stress in Ang II-stimulated AC16 cardiomyocytes. Mechanistically, PCBP2 stabilized NRG4 mRNA to increase NRG4 protein expression in Ang II-induced AC16 cardiomyocytes. NRG4 depletion counteracted the suppressive effects of PCBP2 upregulation on hypertrophy, NLRP3 inflammasome activation, and oxidative stress of Ang II-induced AC16 cardiomyocytes. Additionally, the PCBP2/NRG4 cascade regulated the AMPK/mTOR signaling pathway in Ang II-induced AC16 cardiomyocytes. Our data demonstrate that the previously uncharacterized PCBP2/NRG4 cascade attenuates Ang II-triggered hypertrophy, NLRP3 inflammasome activation, and oxidative stress of AC16 cardiomyocytes.

PCBP2促进NRG4 mRNA稳定性,减少血管紧张素ii诱导的肥大、NLRP3炎性体激活和AC16心肌细胞的氧化应激。
心肌肥大,一种复杂的心血管疾病,仍然是一个重大的挑战。NRG4对心肌损伤具有保护作用。在这里,我们阐明了NRG4在血管紧张素II (Ang II)诱导的AC16心肌细胞肥大中的作用。用angii刺激的AC16细胞系作为心肌肥大的体外模型。采用抗α-肌动素抗体免疫荧光法观察细胞面积和大小。定量PCR检测mRNA表达,免疫印迹法检测蛋白水平。流式细胞术检测ROS量。采用商品化试剂盒检测细胞蛋白/DNA比值及IL-1β、IL-18、MDA、SOD水平。通过荧光素酶、RNA免疫沉淀(RIP)和mRNA稳定性实验验证PCBP2和NRG4 mRNA之间的关系。在angii刺激的AC16细胞中,PCBP2和NRG4明显下调。NRG4表达的增加减轻了angii诱导的AC16心肌细胞肥大和纤维化。此外,NRG4的增加减弱了angii刺激的AC16心肌细胞中NLRP3炎性体的激活和氧化应激。机制上,PCBP2稳定NRG4 mRNA,增加Ang ii诱导的AC16心肌细胞中NRG4蛋白的表达。NRG4缺失抵消了PCBP2上调对angii诱导的AC16心肌细胞肥大、NLRP3炎性体激活和氧化应激的抑制作用。此外,PCBP2/NRG4级联调节Ang ii诱导的AC16心肌细胞的AMPK/mTOR信号通路。我们的数据表明,以前未被表征的PCBP2/NRG4级联可减弱Ang ii引发的肥大、NLRP3炎性体激活和AC16心肌细胞的氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信