Saül Llácer Navarro, Elliot Orzan, Ratchawit Janewithayapun, Paavo Penttilä, John Andersson, Anna Ström, Roland Kádár, Tiina Nypelö
{"title":"Tert-Butanol as a Structuring Agent for Cellulose Nanocrystal Fluids and Foams.","authors":"Saül Llácer Navarro, Elliot Orzan, Ratchawit Janewithayapun, Paavo Penttilä, John Andersson, Anna Ström, Roland Kádár, Tiina Nypelö","doi":"10.1021/acs.biomac.5c00184","DOIUrl":null,"url":null,"abstract":"<p><p>Nanocelluloses are uniquely valued for their high surface area and controllable assembly. This study elucidates the assembly of cellulose nanocrystals (CNCs) in tert-butanol (TBA) and water mixtures. We emphasize the influence of TBA on the structure of suspensions and freeze-dried foams. Although the length-scale of CNC organization is large relative to water-TBA structures, adding more than 30 wt % TBA shifted ordered CNC packing into an isotropic network. The change was attributed to the disruption of ionic interactions and adsorption of TBA to hydrophobic CNC interfaces; manifesting as a 5-fold increase in viscosity at 50 wt % TBA content. The freeze-dried foams' morphology was transformed due to TBA-modulated crystal growth during the freezing process. This led to the intriguing capability to control foams' mechanical strength and surface area, achieving up to 3 and 15-fold increases, respectively. The investigations highlight TBA's potential as a structuring agent in solvent-mediated design of nanomaterial systems.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00184","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocelluloses are uniquely valued for their high surface area and controllable assembly. This study elucidates the assembly of cellulose nanocrystals (CNCs) in tert-butanol (TBA) and water mixtures. We emphasize the influence of TBA on the structure of suspensions and freeze-dried foams. Although the length-scale of CNC organization is large relative to water-TBA structures, adding more than 30 wt % TBA shifted ordered CNC packing into an isotropic network. The change was attributed to the disruption of ionic interactions and adsorption of TBA to hydrophobic CNC interfaces; manifesting as a 5-fold increase in viscosity at 50 wt % TBA content. The freeze-dried foams' morphology was transformed due to TBA-modulated crystal growth during the freezing process. This led to the intriguing capability to control foams' mechanical strength and surface area, achieving up to 3 and 15-fold increases, respectively. The investigations highlight TBA's potential as a structuring agent in solvent-mediated design of nanomaterial systems.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.