Image-based inference of tumor cell trajectories enables large-scale cancer progression analysis

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yang Liu, Ling Cai, Ruichen Rong, Shidan Wang, Liwei Jia, Peiran Quan, Qin Zhou, Guanghua Xiao, Yang Xie
{"title":"Image-based inference of tumor cell trajectories enables large-scale cancer progression analysis","authors":"Yang Liu,&nbsp;Ling Cai,&nbsp;Ruichen Rong,&nbsp;Shidan Wang,&nbsp;Liwei Jia,&nbsp;Peiran Quan,&nbsp;Qin Zhou,&nbsp;Guanghua Xiao,&nbsp;Yang Xie","doi":"10.1126/sciadv.adv9466","DOIUrl":null,"url":null,"abstract":"<div >Current approaches to estimating cell trajectories, tumor progression dynamics, and cell population diversity of tumor microenvironment often depend on single-cell RNA sequencing, which is costly and resource intensive. To address this limitation, we developed an artificial intelligence (AI) model that leverages cell morphology features and histological spatial organization to classify tumor cell differentiation status, infer cell dynamic trajectories, and quantify tumor progression from hematoxylin and eosin (H&amp;E)–stained whole-slide images. In three independent lung adenocarcinoma cohorts, our AI-based model accurately predicted cell differential status and provided quantifiable measures of tumor progression that were prognostic of patient survival. Spatial transcriptomic integrative analyses revealed cell components and gene signatures enriched in different cell differentiation statuses. Bulk transcriptomic analyses revealed that fast-progressing tumors exhibit up-regulated cell cycle pathways, while slow-progressing tumors retain characteristics of normal lung epithelium. This cost-effective method enables large-scale analysis of tumor progression dynamics using routinely collected pathology slides and provides insights into intratumor heterogeneity.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv9466","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv9466","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Current approaches to estimating cell trajectories, tumor progression dynamics, and cell population diversity of tumor microenvironment often depend on single-cell RNA sequencing, which is costly and resource intensive. To address this limitation, we developed an artificial intelligence (AI) model that leverages cell morphology features and histological spatial organization to classify tumor cell differentiation status, infer cell dynamic trajectories, and quantify tumor progression from hematoxylin and eosin (H&E)–stained whole-slide images. In three independent lung adenocarcinoma cohorts, our AI-based model accurately predicted cell differential status and provided quantifiable measures of tumor progression that were prognostic of patient survival. Spatial transcriptomic integrative analyses revealed cell components and gene signatures enriched in different cell differentiation statuses. Bulk transcriptomic analyses revealed that fast-progressing tumors exhibit up-regulated cell cycle pathways, while slow-progressing tumors retain characteristics of normal lung epithelium. This cost-effective method enables large-scale analysis of tumor progression dynamics using routinely collected pathology slides and provides insights into intratumor heterogeneity.

Abstract Image

基于图像的肿瘤细胞轨迹推断使大规模的癌症进展分析成为可能
目前估计肿瘤微环境的细胞轨迹、肿瘤进展动态和细胞群体多样性的方法通常依赖于单细胞RNA测序,这是昂贵且资源密集的。为了解决这一限制,我们开发了一种人工智能(AI)模型,该模型利用细胞形态学特征和组织学空间组织来对肿瘤细胞分化状态进行分类,推断细胞动态轨迹,并从苏木精和伊红(H&;E)染色的全片图像中量化肿瘤进展。在三个独立的肺腺癌队列中,我们基于人工智能的模型准确地预测了细胞分化状态,并提供了可量化的肿瘤进展指标,这些指标是患者生存的预后。空间转录组整合分析揭示了不同细胞分化状态下丰富的细胞成分和基因特征。大量转录组学分析显示,快速进展的肿瘤表现出上调的细胞周期通路,而缓慢进展的肿瘤保留了正常肺上皮的特征。这种具有成本效益的方法可以使用常规收集的病理切片对肿瘤进展动态进行大规模分析,并提供对肿瘤内异质性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信