Present-day Earth mantle structure set up by crustal pollution of the basal magma ocean

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Maxim D. Ballmer, Rob J. Spaargaren, Ananya Mallik, Antonio Manjón-Cabeza Córdoba, Miki Nakajima, Kenny Vilella
{"title":"Present-day Earth mantle structure set up by crustal pollution of the basal magma ocean","authors":"Maxim D. Ballmer,&nbsp;Rob J. Spaargaren,&nbsp;Ananya Mallik,&nbsp;Antonio Manjón-Cabeza Córdoba,&nbsp;Miki Nakajima,&nbsp;Kenny Vilella","doi":"10.1126/sciadv.adu2072","DOIUrl":null,"url":null,"abstract":"<div >The crystallization of a global magma ocean during early terrestrial planet evolution and the subsequent segregation of a longer-lived “basal magma ocean” (BMO) atop the core set up the evolution of the mantle-atmosphere system. Although seismic evidence for a BMO exists on present-day Mars and the Moon, the Earth’s BMO is (near-)completely solidified. Seismically observed “large low-velocity provinces” (LLVPs) are thought to have resulted from the canonical “fractional” style of BMO crystallization. However, we show using thermodynamic modeling that BMO fractional crystallization yields lowermost-mantle densities much higher than those of LLVPs. In turn, pollution of the BMO by progressive addition of recycled basaltic crust and related “reactive crystallization” can reconcile LLVP volumes, densities, and compositions. This model also makes testable predictions of the compositions of “ultralow-velocity zones,” enigmatic deep Earth seismic domains, and possible BMO remnants. The critical role of crustal pollution elucidates the survival of a BMO on Mars, but implies an Earth-like fate for any Venusian BMO.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu2072","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu2072","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The crystallization of a global magma ocean during early terrestrial planet evolution and the subsequent segregation of a longer-lived “basal magma ocean” (BMO) atop the core set up the evolution of the mantle-atmosphere system. Although seismic evidence for a BMO exists on present-day Mars and the Moon, the Earth’s BMO is (near-)completely solidified. Seismically observed “large low-velocity provinces” (LLVPs) are thought to have resulted from the canonical “fractional” style of BMO crystallization. However, we show using thermodynamic modeling that BMO fractional crystallization yields lowermost-mantle densities much higher than those of LLVPs. In turn, pollution of the BMO by progressive addition of recycled basaltic crust and related “reactive crystallization” can reconcile LLVP volumes, densities, and compositions. This model also makes testable predictions of the compositions of “ultralow-velocity zones,” enigmatic deep Earth seismic domains, and possible BMO remnants. The critical role of crustal pollution elucidates the survival of a BMO on Mars, but implies an Earth-like fate for any Venusian BMO.

Abstract Image

现今地幔结构是由基底岩浆海洋的地壳污染所建立的
在地球行星早期演化过程中,全球岩浆海洋的结晶和随后在地核顶部形成的寿命较长的“基底岩浆海洋”(BMO)的分离建立了地幔-大气系统的演化。尽管在今天的火星和月球上存在BMO的地震证据,但地球上的BMO(几乎)完全凝固了。地震观测到的“大低速省”(LLVPs)被认为是由BMO结晶的典型“分数”风格造成的。然而,我们使用热力学模型表明,BMO分数结晶产生的最低地幔密度远高于llvp。反过来,逐渐加入回收玄武岩壳和相关的“反应结晶”对BMO的污染可以调和LLVP的体积、密度和组成。该模型还对“超低速度带”的组成、神秘的地球深部地震域和可能的BMO残余进行了可测试的预测。地壳污染的关键作用阐明了BMO在火星上的生存,但意味着任何金星BMO的命运都与地球相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信