Ternary Schottky-p-n heterojunction strategy for enhancing photothermal dry reforming of methane

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qingqing Zhang, Ziyu Chen, Yutao Ye, Chang Xu, Cong Liu, Xiaoming Cao, Jinlong Zhang, Juying Lei, Ziwei Ye, Lingzhi Wang
{"title":"Ternary Schottky-p-n heterojunction strategy for enhancing photothermal dry reforming of methane","authors":"Qingqing Zhang,&nbsp;Ziyu Chen,&nbsp;Yutao Ye,&nbsp;Chang Xu,&nbsp;Cong Liu,&nbsp;Xiaoming Cao,&nbsp;Jinlong Zhang,&nbsp;Juying Lei,&nbsp;Ziwei Ye,&nbsp;Lingzhi Wang","doi":"10.1126/sciadv.adv5078","DOIUrl":null,"url":null,"abstract":"<div >Breaking the trade-off between activity and stability in catalysts for dry reforming of methane has long remained a huge challenge. Here, we demonstrate a ternary Schottky-p-n (TSPN) heterojunction strategy based on Ni-NiO-Sr<sub>2</sub>Nb<sub>2</sub>O<sub>7</sub> (NiO<i><sub>x</sub></i>/SNO) for photothermal dry reforming of methane. This approach achieves a stable syngas production rate of 10.54 moles per gram per hour, with a light-to-fuel efficiency of 28.3% and a CH<sub>4</sub> turnover frequency of 18 per second at 500°C generated by concentrated light irradiation. This low-temperature, high-rate activity benefits from the photoaccelerated CH<sub>4</sub>-to-H<sub>2</sub> process facilitated by the synergistic effect of NiO and Ni<sup>0</sup>. Furthermore, the light-induced spatial separation of dual reduction sites for CO<sub>2</sub> reduction (SNO) and H<sub>2</sub> evolution (Ni<sup>0</sup>) suppresses the reverse water-gas shift (RWGS) reaction, ensuring continuous supply of active oxygen and improving reaction stability. This finding is expected to substantially promote low-temperature photothermal catalytic technology in enhancing the selective conversion efficiency of C<sub>1</sub> molecules.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv5078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv5078","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Breaking the trade-off between activity and stability in catalysts for dry reforming of methane has long remained a huge challenge. Here, we demonstrate a ternary Schottky-p-n (TSPN) heterojunction strategy based on Ni-NiO-Sr2Nb2O7 (NiOx/SNO) for photothermal dry reforming of methane. This approach achieves a stable syngas production rate of 10.54 moles per gram per hour, with a light-to-fuel efficiency of 28.3% and a CH4 turnover frequency of 18 per second at 500°C generated by concentrated light irradiation. This low-temperature, high-rate activity benefits from the photoaccelerated CH4-to-H2 process facilitated by the synergistic effect of NiO and Ni0. Furthermore, the light-induced spatial separation of dual reduction sites for CO2 reduction (SNO) and H2 evolution (Ni0) suppresses the reverse water-gas shift (RWGS) reaction, ensuring continuous supply of active oxygen and improving reaction stability. This finding is expected to substantially promote low-temperature photothermal catalytic technology in enhancing the selective conversion efficiency of C1 molecules.

Abstract Image

促进甲烷光热干重整的三元Schottky-p-n异质结策略
长期以来,打破甲烷干重整催化剂活性和稳定性之间的平衡一直是一个巨大的挑战。在这里,我们展示了一种基于Ni-NiO-Sr2Nb2O7 (NiOx/SNO)的三元Schottky-p-n (TSPN)异质结策略,用于甲烷光热干重整。该方法实现了稳定的合成气产率10.54摩尔/克/小时,光-燃料效率为28.3%,在500℃聚光照射下产生的CH4周转率为每秒18次。这种低温、高速率的活性得益于NiO和Ni0的协同作用促进了ch4 - h2的光加速过程。此外,光诱导的CO2还原(SNO)和H2析出(Ni0)双还原位点的空间分离抑制了逆水气转换(RWGS)反应,保证了活性氧的持续供应,提高了反应的稳定性。这一发现有望大大促进低温光热催化技术在提高C1分子选择性转化效率方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信