Multiomic identification of senescent stem cell populations critical for osteoarthritis progression and therapy in subchondral bones

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Pei Lin Li, Jie Tang, Xiao Tong Li, Shi Rong Zhao, Run Xiang Xu, Zhi Dong Zhao, Zhong Li Li, Zhi Ling Li, Bo Feng Yin, Fu Hao Yu, Chu Tse Wu, Heng Zhu
{"title":"Multiomic identification of senescent stem cell populations critical for osteoarthritis progression and therapy in subchondral bones","authors":"Pei Lin Li,&nbsp;Jie Tang,&nbsp;Xiao Tong Li,&nbsp;Shi Rong Zhao,&nbsp;Run Xiang Xu,&nbsp;Zhi Dong Zhao,&nbsp;Zhong Li Li,&nbsp;Zhi Ling Li,&nbsp;Bo Feng Yin,&nbsp;Fu Hao Yu,&nbsp;Chu Tse Wu,&nbsp;Heng Zhu","doi":"10.1126/sciadv.adu2294","DOIUrl":null,"url":null,"abstract":"<div >Osteoarthritis (OA) is a challenging degenerative joint disease with limited treatment options. Subchondral bone plays a critical role in maintaining joint homeostasis and influencing OA progression. Here, we investigated the role of senescence in mesenchyme-derived stem/progenitor cells (MDSPCs) during OA progression, aiming to identify potential therapeutic targets. Histopathological evaluations and bioinformatic analyses of OA samples from both humans and mice revealed that EGFR<sup>+</sup> MDSPCs and EREG<sup>+</sup> macrophages constitute a senescent skeletal unit within the osteoarthritic articular subchondral bone. In vitro and in vivo experiments demonstrated that EREG promotes senescence and excessive osteogenesis in EGFR<sup>+</sup> MDSPCs. Moreover, interference with <i>Ereg</i> expression, via adeno-associated virus–mediated <i>Ereg</i> knockdown or genetic knockout in mice, significantly suppressed senescence of EGFR<sup>+</sup> MDSPCs in subchondral bone and alleviated both pathological sclerosis and pain in OA mice. Our findings indicate that MDSPC senescence in the subchondral bone is a key event driving OA progression, offering a valuable reference point to develop innovative therapeutic strategies for OA.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu2294","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu2294","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a challenging degenerative joint disease with limited treatment options. Subchondral bone plays a critical role in maintaining joint homeostasis and influencing OA progression. Here, we investigated the role of senescence in mesenchyme-derived stem/progenitor cells (MDSPCs) during OA progression, aiming to identify potential therapeutic targets. Histopathological evaluations and bioinformatic analyses of OA samples from both humans and mice revealed that EGFR+ MDSPCs and EREG+ macrophages constitute a senescent skeletal unit within the osteoarthritic articular subchondral bone. In vitro and in vivo experiments demonstrated that EREG promotes senescence and excessive osteogenesis in EGFR+ MDSPCs. Moreover, interference with Ereg expression, via adeno-associated virus–mediated Ereg knockdown or genetic knockout in mice, significantly suppressed senescence of EGFR+ MDSPCs in subchondral bone and alleviated both pathological sclerosis and pain in OA mice. Our findings indicate that MDSPC senescence in the subchondral bone is a key event driving OA progression, offering a valuable reference point to develop innovative therapeutic strategies for OA.

Abstract Image

衰老干细胞群的多组学鉴定对软骨下骨关节炎的进展和治疗至关重要
骨关节炎(OA)是一种具有挑战性的退行性关节疾病,治疗方案有限。软骨下骨在维持关节稳态和影响骨关节炎进展方面起着关键作用。在这里,我们研究了衰老在OA进展过程中间充质来源的干细胞/祖细胞(MDSPCs)中的作用,旨在确定潜在的治疗靶点。人类和小鼠OA样本的组织病理学评估和生物信息学分析显示,EGFR+ MDSPCs和EREG+巨噬细胞构成骨关节炎关节软骨下骨内衰老的骨骼单元。体外和体内实验表明,EREG促进EGFR+ MDSPCs的衰老和过度成骨。此外,通过腺相关病毒介导的Ereg敲低或基因敲除小鼠中Ereg的表达,可显著抑制软骨下骨EGFR+ MDSPCs的衰老,减轻OA小鼠的病理性硬化和疼痛。我们的研究结果表明,软骨下骨MDSPC衰老是推动OA进展的关键事件,为开发OA的创新治疗策略提供了有价值的参考点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信