{"title":"Proteolytic-resistant self-assembling peptide nanofibers combat specific bacterial infections via trap and kill","authors":"Weikang Yu, Mengyi Zhao, Xu Guo, Xiangwan Wang, Jiajun Wang, Yinfeng Lyu, Anshan Shan","doi":"10.1126/sciadv.adx0153","DOIUrl":null,"url":null,"abstract":"<div >The rise in global antibiotic resistance highlights the urgent need for effective antimicrobial agents. Antimicrobial peptides (AMPs) offer a potential solution to combat bacterial resistance. However, key challenges remain in addressing the limitations of current peptide drugs and biomaterials, such as narrow action modes, poor protease stability, and challenges in pathogen-specific targeting. This study introduces a series of multifunctional AMPs by integrating self-assembling systems. By regulating the length of cationic amino acid side chains, the optimized peptide Nhar was identified as a triple-functional candidate with the potential to solve these limitations. In aqueous solutions, Nhar self-assembles into nanofibers that trap pathogens, prevent their spread, and selectively kill Gram-positive bacteria. Nhar demonstrates remarkable protease resistance, retaining antimicrobial activity even under protease conditions (10 milligrams per milliliter). It induces bacterial death primarily through membrane disruption and multiple synergistic mechanisms. In a <i>Staphylococcus aureus</i>–induced mouse bacteremia model, Nhar showed promising therapeutic potential. This work offers important insights for developing multifunctional antimicrobial therapies.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx0153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx0153","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The rise in global antibiotic resistance highlights the urgent need for effective antimicrobial agents. Antimicrobial peptides (AMPs) offer a potential solution to combat bacterial resistance. However, key challenges remain in addressing the limitations of current peptide drugs and biomaterials, such as narrow action modes, poor protease stability, and challenges in pathogen-specific targeting. This study introduces a series of multifunctional AMPs by integrating self-assembling systems. By regulating the length of cationic amino acid side chains, the optimized peptide Nhar was identified as a triple-functional candidate with the potential to solve these limitations. In aqueous solutions, Nhar self-assembles into nanofibers that trap pathogens, prevent their spread, and selectively kill Gram-positive bacteria. Nhar demonstrates remarkable protease resistance, retaining antimicrobial activity even under protease conditions (10 milligrams per milliliter). It induces bacterial death primarily through membrane disruption and multiple synergistic mechanisms. In a Staphylococcus aureus–induced mouse bacteremia model, Nhar showed promising therapeutic potential. This work offers important insights for developing multifunctional antimicrobial therapies.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.