Stephen M. Elardo, Kim A. Cone, Matthew A. Siegler, Samuel J. Williams, Richard M. Palin
{"title":"A shallow mantle source for the Chang’e 5 lavas reveals how top-down heating prolonged lunar magmatism","authors":"Stephen M. Elardo, Kim A. Cone, Matthew A. Siegler, Samuel J. Williams, Richard M. Palin","doi":"10.1126/sciadv.adr1486","DOIUrl":null,"url":null,"abstract":"<div >The 2-billion-year-old basalts collected by the Chang’e 5 mission are younger than any other sampled lunar igneous rock. These lavas provide critical insight into the evolution of the Moon at a time when magmatism was waning and represent a key data point for understanding how rocky bodies cool. Here, we present high-P-T experiments and phase equilibrium modeling performed on a Chang’e 5 basalt composition that show the parental magma formed in the shallow mantle, at ~75- to 130-kilometer depth. This shallow source and Sr-Nd isotopic evidence for the lack of the heat-producing KREEP reservoir in sources of the Chang’e 5 basalt and high-Ti basalts collected by Apollo demonstrate that KREEP was not carried into the deep mantle to generate prolonged melting. Rather, we show that a subcrustal KREEP layer conductively heating the nearside mantle from the top down is likely responsible for prolonged lunar magmatism.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr1486","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr1486","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The 2-billion-year-old basalts collected by the Chang’e 5 mission are younger than any other sampled lunar igneous rock. These lavas provide critical insight into the evolution of the Moon at a time when magmatism was waning and represent a key data point for understanding how rocky bodies cool. Here, we present high-P-T experiments and phase equilibrium modeling performed on a Chang’e 5 basalt composition that show the parental magma formed in the shallow mantle, at ~75- to 130-kilometer depth. This shallow source and Sr-Nd isotopic evidence for the lack of the heat-producing KREEP reservoir in sources of the Chang’e 5 basalt and high-Ti basalts collected by Apollo demonstrate that KREEP was not carried into the deep mantle to generate prolonged melting. Rather, we show that a subcrustal KREEP layer conductively heating the nearside mantle from the top down is likely responsible for prolonged lunar magmatism.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.