Modeling the Dynamics of Fungal Diseases in Onion Cultivation With Optimal Control Strategies

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dejen Ketema Mamo, Mathew Ngugi Kinyanjui, Yohannes Fissha Abebaw, Gizachew Kefelew Hailu, Shewafera Wondimagegnhu Teklu
{"title":"Modeling the Dynamics of Fungal Diseases in Onion Cultivation With Optimal Control Strategies","authors":"Dejen Ketema Mamo,&nbsp;Mathew Ngugi Kinyanjui,&nbsp;Yohannes Fissha Abebaw,&nbsp;Gizachew Kefelew Hailu,&nbsp;Shewafera Wondimagegnhu Teklu","doi":"10.1002/eng2.70300","DOIUrl":null,"url":null,"abstract":"<p>Onion cultivation (<i>Allium cepa</i>), a crucial crop worldwide, is threatened by fungal pathogens, leading to substantial reductions in yield and economic challenges. We present a new deterministic compartmental model to study the dynamics of fungal diseases in onion fields. Incorporating spore generation, latency phases, and control strategies such as fungicides and infected plant removal. The stability of the endemic and disease-free equilibrium, based on the basic reproduction number (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℛ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{R}}_0 $$</annotation>\n </semantics></math>), guides strategies to lower disease cases and reduce intervention costs. Sensitivity analysis with partial rank correlation coefficients highlights spore deposition rate (<span></span><math>\n <semantics>\n <mrow>\n <mi>ν</mi>\n </mrow>\n <annotation>$$ \\nu $$</annotation>\n </semantics></math>) and infection coefficients (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>β</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\beta}_1 $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>β</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\beta}_2 $$</annotation>\n </semantics></math>) as critical factors for pathogen dissemination, with reduced fungicide effectiveness and spore decay (<span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation>$$ \\epsilon $$</annotation>\n </semantics></math>). Simulations revealed that combining fungicide with plant removal significantly reduces infections, providing an economical approach. The model bridges epidemiological theory with disease control, serving as a valuable resource for improving onion crop resilience and advancing sustainable farming.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70300","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Onion cultivation (Allium cepa), a crucial crop worldwide, is threatened by fungal pathogens, leading to substantial reductions in yield and economic challenges. We present a new deterministic compartmental model to study the dynamics of fungal diseases in onion fields. Incorporating spore generation, latency phases, and control strategies such as fungicides and infected plant removal. The stability of the endemic and disease-free equilibrium, based on the basic reproduction number ( 0 $$ {\mathcal{R}}_0 $$ ), guides strategies to lower disease cases and reduce intervention costs. Sensitivity analysis with partial rank correlation coefficients highlights spore deposition rate ( ν $$ \nu $$ ) and infection coefficients ( β 1 $$ {\beta}_1 $$ , β 2 $$ {\beta}_2 $$ ) as critical factors for pathogen dissemination, with reduced fungicide effectiveness and spore decay ( ϵ $$ \epsilon $$ ). Simulations revealed that combining fungicide with plant removal significantly reduces infections, providing an economical approach. The model bridges epidemiological theory with disease control, serving as a valuable resource for improving onion crop resilience and advancing sustainable farming.

Abstract Image

基于最优控制策略的洋葱栽培真菌病害动态建模
洋葱种植(Allium cepa)是世界范围内的一种重要作物,受到真菌病原体的威胁,导致产量大幅下降和经济挑战。我们提出了一种新的确定性区室模型来研究洋葱田间真菌病害的动态。结合孢子产生,潜伏期和控制策略,如杀菌剂和受感染的植物去除。基于基本繁殖数(0 $$ {\mathcal{R}}_0 $$)的地方性和无病平衡的稳定性指导降低疾病病例和降低干预成本的策略。部分等级相关系数敏感性分析突出了孢子沉积率(ν $$ \nu $$)和感染系数(β 1$$ {\beta}_1 $$, β 2 $$ {\beta}_2 $$)是病原体传播的关键因素;杀菌剂效果降低,孢子腐烂(御柱$$ \epsilon $$)。模拟结果显示,将杀菌剂与植物去除相结合可以显著减少感染,提供了一种经济的方法。该模型将流行病学理论与疾病控制联系起来,为提高洋葱作物的抗灾能力和促进可持续农业发展提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信