{"title":"A Highly Reliable Dual-Mode RRAM PUF With Key Concealment Scheme","authors":"Jiang Li;Yijun Cui;Chongyan Gu;Chenghua Wang;Weiqiang Liu;Shahar Kvatinsky","doi":"10.1109/TCAD.2025.3536376","DOIUrl":null,"url":null,"abstract":"Physical unclonable function (PUF) has been widely used in the Internet of Things (IoT) as a promising hardware security primitive. In recent years, PUFs based on resistive random access memory (RRAM) have demonstrated excellent reliability and integration density. Most previous designs store PUF keys directly in RRAMs, increasing vulnerability to attacks. This article proposes a dual-mode RRAM PUF, named differential mode and flexible mode, utilizing the difference in switching capability between RRAMs during parallel SET operations as the entropy source. The proposed PUF can reliably reproduce keys between cycles, so a key concealment scheme is used to protect PUF keys from being continuously exposed, improving the security of the RRAM PUF. The proposed RRAM PUF exhibits high reliability over ±10% VDD and a wide temperature range from −25°C to 125°C through post-processing operations. The flexible mode can generate a significant number of keys for high-security applications. Since the PUF keys can be concealed, the proposed PUF is compatible with in-memory computing. It can be implemented using the same RRAM array as experimentally validated using a MAGIC operation, thus reducing the hardware overhead.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"44 8","pages":"2870-2882"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856848/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Physical unclonable function (PUF) has been widely used in the Internet of Things (IoT) as a promising hardware security primitive. In recent years, PUFs based on resistive random access memory (RRAM) have demonstrated excellent reliability and integration density. Most previous designs store PUF keys directly in RRAMs, increasing vulnerability to attacks. This article proposes a dual-mode RRAM PUF, named differential mode and flexible mode, utilizing the difference in switching capability between RRAMs during parallel SET operations as the entropy source. The proposed PUF can reliably reproduce keys between cycles, so a key concealment scheme is used to protect PUF keys from being continuously exposed, improving the security of the RRAM PUF. The proposed RRAM PUF exhibits high reliability over ±10% VDD and a wide temperature range from −25°C to 125°C through post-processing operations. The flexible mode can generate a significant number of keys for high-security applications. Since the PUF keys can be concealed, the proposed PUF is compatible with in-memory computing. It can be implemented using the same RRAM array as experimentally validated using a MAGIC operation, thus reducing the hardware overhead.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.