{"title":"Geographically informed graph neural networks","authors":"Xuankai Ma , Zehua Zhang , Yongze Song","doi":"10.1016/j.spasta.2025.100920","DOIUrl":null,"url":null,"abstract":"<div><div>Graph neural networks (GNNs) have been introduced to spatial statistical tasks due to their mechanisms of simulating spatial interactions and processes among geographical neighbours using graph structures. However, previous methods ignore quantifying differences in attributes among adjacent spatial characteristics. Considering this spatial characteristic by fitting the spatial statistic trinity (SST) framework may help improve models’ accuracy and robustness. Thus, we introduce the geographically informed graph neural network (GIGNN) by considering the additional geospatial feature: closer geographical entities may interact less when spatial disparities are captured. When setting up the model, GIGNN leverages differences of attributes by spatial stratified heterogeneity, quantifies connections between geographical entities, and inherits k-order neighbour attribute aggregation and message-passing mechanisms from GNNs. GIGNN is applied to an urbanization analysis study in the Greater Perth Area, Australia, showing higher accuracy than the existing machine learning models and other GNNs in simulation and prediction accuracy. GIGNN achieved an accuracy of 84.1% for simulation and an accuracy of 81% for prediction. Incorporating spatial characteristics into GNNs enhances simulation and prediction accuracy in geoscientific applications, highlighting the importance of spatially aware models in solving complex problems by capturing geographical data dependencies.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"69 ","pages":"Article 100920"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000429","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graph neural networks (GNNs) have been introduced to spatial statistical tasks due to their mechanisms of simulating spatial interactions and processes among geographical neighbours using graph structures. However, previous methods ignore quantifying differences in attributes among adjacent spatial characteristics. Considering this spatial characteristic by fitting the spatial statistic trinity (SST) framework may help improve models’ accuracy and robustness. Thus, we introduce the geographically informed graph neural network (GIGNN) by considering the additional geospatial feature: closer geographical entities may interact less when spatial disparities are captured. When setting up the model, GIGNN leverages differences of attributes by spatial stratified heterogeneity, quantifies connections between geographical entities, and inherits k-order neighbour attribute aggregation and message-passing mechanisms from GNNs. GIGNN is applied to an urbanization analysis study in the Greater Perth Area, Australia, showing higher accuracy than the existing machine learning models and other GNNs in simulation and prediction accuracy. GIGNN achieved an accuracy of 84.1% for simulation and an accuracy of 81% for prediction. Incorporating spatial characteristics into GNNs enhances simulation and prediction accuracy in geoscientific applications, highlighting the importance of spatially aware models in solving complex problems by capturing geographical data dependencies.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.