Revealing the high-temperature stability and phase transformation in isolated TiO2 nanotubes using in situ heating TEM

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chenyue Qiu , Lilly Schaffer , Mengsha Li , Maggie Paulose , Jason Tam , Shuo Chen , Paththini Kuttige S. Nonis , Aniqa Lim , Jane Y. Howe , Oomman K. Varghese
{"title":"Revealing the high-temperature stability and phase transformation in isolated TiO2 nanotubes using in situ heating TEM","authors":"Chenyue Qiu ,&nbsp;Lilly Schaffer ,&nbsp;Mengsha Li ,&nbsp;Maggie Paulose ,&nbsp;Jason Tam ,&nbsp;Shuo Chen ,&nbsp;Paththini Kuttige S. Nonis ,&nbsp;Aniqa Lim ,&nbsp;Jane Y. Howe ,&nbsp;Oomman K. Varghese","doi":"10.1016/j.mtnano.2025.100654","DOIUrl":null,"url":null,"abstract":"<div><div>High crystallinity is key to the performance of most electronic materials, especially semiconductors. When derived from amorphous phase, heat treatment is commonly used for achieving the desired structural order and crystal phase. Understanding thermally driven phase transformations is essential for assessing material viability. Titanium dioxide (TiO<sub>2</sub>) nanotube arrays, fabricated <em>via</em> anodic oxidation, are a promising low dimensional wide band-gap semiconductor potentially useful for a myriad of applications. Nonetheless, previous studies primarily focused on the array film geometry, obscuring the nanoscale processes in single nanotubes. Herein, we report the efficacy of <em>in situ</em> heating transmission electron microscopy and electron energy loss spectroscopy to dynamically elucidate the processes of crystallization and phase transformation in a single amorphous TiO<sub>2</sub> nanotube. The study reveals that crystallization initiates at 300 °C to form anatase and rutile phases, with brookite emerging at 550 °C. Remarkably, the nanotubes retain this unique three-phase structure even at 950 °C. Supported by <em>ex situ</em> X-ray diffraction and Raman spectroscopy results, this systematic and real-time exploration demonstrates that a complete transition to rutile, the most stable phase, could be prevented in isolated nanotubes, unlocking new applications.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"31 ","pages":"Article 100654"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000859","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High crystallinity is key to the performance of most electronic materials, especially semiconductors. When derived from amorphous phase, heat treatment is commonly used for achieving the desired structural order and crystal phase. Understanding thermally driven phase transformations is essential for assessing material viability. Titanium dioxide (TiO2) nanotube arrays, fabricated via anodic oxidation, are a promising low dimensional wide band-gap semiconductor potentially useful for a myriad of applications. Nonetheless, previous studies primarily focused on the array film geometry, obscuring the nanoscale processes in single nanotubes. Herein, we report the efficacy of in situ heating transmission electron microscopy and electron energy loss spectroscopy to dynamically elucidate the processes of crystallization and phase transformation in a single amorphous TiO2 nanotube. The study reveals that crystallization initiates at 300 °C to form anatase and rutile phases, with brookite emerging at 550 °C. Remarkably, the nanotubes retain this unique three-phase structure even at 950 °C. Supported by ex situ X-ray diffraction and Raman spectroscopy results, this systematic and real-time exploration demonstrates that a complete transition to rutile, the most stable phase, could be prevented in isolated nanotubes, unlocking new applications.
利用原位加热透射电镜研究分离TiO2纳米管的高温稳定性和相变
高结晶度是大多数电子材料,特别是半导体性能的关键。当来源于非晶相时,热处理通常用于获得所需的结构顺序和晶相。了解热驱动相变对于评估材料的可行性至关重要。二氧化钛(TiO2)纳米管阵列是一种很有前途的低维宽带隙半导体,具有广泛的应用前景。然而,先前的研究主要集中在阵列膜的几何形状上,模糊了单个纳米管的纳米尺度过程。在此,我们报道了原位加热透射电镜和电子能量损失谱在动态阐明单个非晶TiO2纳米管的结晶和相变过程中的有效性。研究表明,在300℃时开始结晶,形成锐钛矿和金红石相,550℃时出现板岩相。值得注意的是,即使在950°C下,纳米管也能保持这种独特的三相结构。在非原位x射线衍射和拉曼光谱结果的支持下,这项系统和实时的探索表明,在隔离的纳米管中,可以防止完全过渡到金红石,金红石是最稳定的相,从而开启了新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信