Vishal V. Burungale , Mayur A. Gaikwad , Hyojung Bae , Pratik Mane , Jiwon Heo , Chaewon Seong , Jin Hyeok Kim , Jihun Oh , Jun-Seok Ha
{"title":"Advances in gas diffusion electrode technology for electrochemical CO2 reduction: Innovations, challenges, and future directions","authors":"Vishal V. Burungale , Mayur A. Gaikwad , Hyojung Bae , Pratik Mane , Jiwon Heo , Chaewon Seong , Jin Hyeok Kim , Jihun Oh , Jun-Seok Ha","doi":"10.1016/j.mser.2025.101064","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing challenges of global warming and the necessity to reduce carbon dioxide (CO<sub>2</sub>) emissions, in recent times, CO<sub>2</sub> reduction technology has gained significant attention. Following early H-cell breakthroughs, the integration of Gas Diffusion Electrodes (GDEs) has accelerated the progress of industrially viable CO<sub>2</sub> reduction. However, despite several recent breakthroughs in GDE-based CO<sub>2</sub> reduction, there is a considerable lack of focused reviews on this topic. Addressing this gap, the present review systematically discusses recent progress in GDEs over the past six years within the specific context of electrochemical CO<sub>2</sub> reduction. Focused specifically on GDEs, the review explores different designs and materials used for the fabrication of GDEs, along with a discussion on their pros and cons. It covers the fundamentals of CO<sub>2</sub> reduction, GDE structures, and electrolytic cell designs. Further, the review addresses the challenges and breakthroughs in GDE technology by extending the discussion on self-supported GDEs, innovative approaches, fundamental studies, and some advanced CO<sub>2</sub> reduction technologies such as GDE-based Bioelectrodes and on-site CO<sub>2</sub> capture and conversion. Finally, the findings of the literature have been summarized in the section of a summary and future perspectives, offering valuable insights to accelerate the development of industrially viable CO<sub>2</sub> reduction.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101064"},"PeriodicalIF":31.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X2500141X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the growing challenges of global warming and the necessity to reduce carbon dioxide (CO2) emissions, in recent times, CO2 reduction technology has gained significant attention. Following early H-cell breakthroughs, the integration of Gas Diffusion Electrodes (GDEs) has accelerated the progress of industrially viable CO2 reduction. However, despite several recent breakthroughs in GDE-based CO2 reduction, there is a considerable lack of focused reviews on this topic. Addressing this gap, the present review systematically discusses recent progress in GDEs over the past six years within the specific context of electrochemical CO2 reduction. Focused specifically on GDEs, the review explores different designs and materials used for the fabrication of GDEs, along with a discussion on their pros and cons. It covers the fundamentals of CO2 reduction, GDE structures, and electrolytic cell designs. Further, the review addresses the challenges and breakthroughs in GDE technology by extending the discussion on self-supported GDEs, innovative approaches, fundamental studies, and some advanced CO2 reduction technologies such as GDE-based Bioelectrodes and on-site CO2 capture and conversion. Finally, the findings of the literature have been summarized in the section of a summary and future perspectives, offering valuable insights to accelerate the development of industrially viable CO2 reduction.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.