Connectivity threshold for superpositions of Bernoulli random graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Daumilas Ardickas, Mindaugas Bloznelis
{"title":"Connectivity threshold for superpositions of Bernoulli random graphs","authors":"Daumilas Ardickas,&nbsp;Mindaugas Bloznelis","doi":"10.1016/j.disc.2025.114684","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be independent Bernoulli random subgraphs of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> having variable sizes <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∈</mo><mo>[</mo><mi>n</mi><mo>]</mo></math></span> and densities <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Letting <span><math><mi>n</mi><mo>,</mo><mi>m</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>, we study the connectivity threshold for the union <span><math><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> defined on the vertex set of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Assuming that the empirical distribution <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> of the pairs <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> converges to a probability distribution <em>P</em> we show that the threshold is defined by the mixed moments <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>∬</mo><mi>x</mi><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>|</mo></mrow></msup><mo>)</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>(</mo><mi>d</mi><mi>x</mi><mo>,</mo><mi>d</mi><mi>q</mi><mo>)</mo></math></span>. For <span><math><mi>ln</mi><mo>⁡</mo><mi>n</mi><mo>−</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></mfrac><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> we have <span><math><mi>P</mi><mo>{</mo><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is connected<span><math><mo>}</mo><mo>→</mo><mn>1</mn></math></span> and for <span><math><mi>ln</mi><mo>⁡</mo><mi>n</mi><mo>−</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></mfrac><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> we have <span><math><mi>P</mi><mo>{</mo><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is connected<span><math><mo>}</mo><mo>→</mo><mn>0</mn></math></span>. Interestingly, this dichotomy only holds if the mixed moment <span><math><mo>∬</mo><mi>x</mi><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>|</mo></mrow></msup><mo>)</mo><mi>ln</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mi>P</mi><mo>(</mo><mi>d</mi><mi>x</mi><mo>,</mo><mi>d</mi><mi>q</mi><mo>)</mo><mo>&lt;</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114684"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002924","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G1,,Gm be independent Bernoulli random subgraphs of the complete graph Kn having variable sizes x1,,xm[n] and densities q1,,qm[0,1]. Letting n,m+, we study the connectivity threshold for the union k=1mGk defined on the vertex set of Kn. Assuming that the empirical distribution Pn,m of the pairs (x1,q1),,(xm,qm) converges to a probability distribution P we show that the threshold is defined by the mixed moments κn=x(1(1q)|x1|)Pn,m(dx,dq). For lnnmnκn we have P{k=1mGk is connected}1 and for lnnmnκn+ we have P{k=1mGk is connected}0. Interestingly, this dichotomy only holds if the mixed moment x(1(1q)|x1|)ln(1+x)P(dx,dq)<.
伯努利随机图叠加的连通性阈值
设G1,…,Gm为完全图Kn的独立伯努利随机子图,其大小为x1,…,xm∈[n],密度为q1,…,qm∈[0,1]。设n,m→+∞,我们研究了在Kn的顶点集上定义的并集∪k=1mGk的连通阈值。假设(x1,q1),…,(xm,qm)对的经验分布Pn,m收敛于一个概率分布P,我们证明阈值由混合矩κn=∑x(1−(1−q)|x−1|)Pn,m(dx,dq)定义。对于ln ln n - mnκn→−∞我们有P{∪k=1mGk是连通的}→1对于ln n - mnκn→+∞我们有P{∪k=1mGk是连通的}→0。有趣的是,这种二分法只在混合矩((1−(1−q)|x−1|)ln (1+x)P(dx,dq)<∞)下成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信