{"title":"Macrophage migration inhibitory factor induces phospholamban phosphorylation in cardiac muscle","authors":"Zihan Tang , Feng Liu , Miyuki Nishi , Fabienne Mackay , Mutsuo Harada , Hiroshi Takeshima","doi":"10.1016/j.ceca.2025.103051","DOIUrl":null,"url":null,"abstract":"<div><div>The pleiotropic cytokine macrophage migration inhibitory factor (MIF) elevates sarcoplasmic reticulum (SR) Ca<sup>2+</sup> content and enhances Ca<sup>2+</sup> transient in cardiac muscle. Our imaging and immunoblot data indicated that the MIF-evoked effect is caused mainly by the phosphorylation of the SR Ca<sup>2+</sup>-pump regulator phospholamban (PLN). Gene expression data suggested that the cluster of differentiation 74 (CD74) and the C-X-C motif chemokine receptor 7 (CXCR7) form a major MIF receptor complex in cardiomyocytes, but CXCR7 activation alone seemed sufficient to exert the MIF-evoked effect. Our pharmacological assessments suggested that phosphoinositide 3-kinase (PI3K), AKT kinase and endothelial nitric oxide synthase (eNOS) were continuously stimulated in the downstream of CXCR7 activation. Furthermore, NO thus generated likely reacted to activate Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII), leading to PLN phosphorylation and subsequent SR Ca<sup>2+</sup>-pump activation. Therefore, the CXCR7-PI3K-AKT-eNOS-CaMKII-PLN axis is proposed as a central pathway for MIF-evoked potentiation of cardiac Ca<sup>2+</sup> signaling.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"130 ","pages":"Article 103051"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416025000600","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pleiotropic cytokine macrophage migration inhibitory factor (MIF) elevates sarcoplasmic reticulum (SR) Ca2+ content and enhances Ca2+ transient in cardiac muscle. Our imaging and immunoblot data indicated that the MIF-evoked effect is caused mainly by the phosphorylation of the SR Ca2+-pump regulator phospholamban (PLN). Gene expression data suggested that the cluster of differentiation 74 (CD74) and the C-X-C motif chemokine receptor 7 (CXCR7) form a major MIF receptor complex in cardiomyocytes, but CXCR7 activation alone seemed sufficient to exert the MIF-evoked effect. Our pharmacological assessments suggested that phosphoinositide 3-kinase (PI3K), AKT kinase and endothelial nitric oxide synthase (eNOS) were continuously stimulated in the downstream of CXCR7 activation. Furthermore, NO thus generated likely reacted to activate Ca2+/calmodulin-dependent protein kinase II (CaMKII), leading to PLN phosphorylation and subsequent SR Ca2+-pump activation. Therefore, the CXCR7-PI3K-AKT-eNOS-CaMKII-PLN axis is proposed as a central pathway for MIF-evoked potentiation of cardiac Ca2+ signaling.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes