Yunyoung Choi , Woojin Jeon , Yeji Kim , Hakchun Kim , Younghak Cho , Yerim Jang , Somin Lee , Daehun Kim , Tae Jin Mun , Youngmin Yoo , Inhee Choi , Sung Gap Im , Seongjun Park , Hyejeong Seong
{"title":"Photoinitiated CVD antifouling coatings enable long-term stability of flexible multifunctional neural probes for chronic neural recording","authors":"Yunyoung Choi , Woojin Jeon , Yeji Kim , Hakchun Kim , Younghak Cho , Yerim Jang , Somin Lee , Daehun Kim , Tae Jin Mun , Youngmin Yoo , Inhee Choi , Sung Gap Im , Seongjun Park , Hyejeong Seong","doi":"10.1016/j.biomaterials.2025.123554","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible neural probes with integrated recording, optical stimulation, and drug delivery capabilities offer unprecedented access to neural circuit dynamics. However, their long-term utility is compromised by foreign body responses that isolate recording sites from target neurons. This study introduces photoinitiated chemical vapor deposition (piCVD) as a transformative approach to neural interface stability through ultrathin (<100 nm) anti-fouling coatings. Unlike conventional hydrogel coatings that impair electrical signal transmission, our piCVD-applied poly(2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) coating maintains electrical functionality by preserving low impedance while providing superior anti-fouling properties. <em>In vitro</em> protein adsorption studies demonstrated near-complete resistance to both albumin and fibrinogen compared to uncoated surfaces, with the coating maintaining stability even after 24 h of sonication—durability unachievable with conventional wet-chemistry methods. When evaluated in mouse models over three months, the coated probe maintained high-quality spontaneous neural recordings and optically evoked potentials throughout the study period, with signal-to-noise ratios improving from 18.0 at week 1–20.7 at week 13. This performance significantly correlates with 66.6 % reduction in glial scarring, 84.6 % increase in neuronal preservation compared to uncoated probes. The specific combination of CVD methodology and optimized copolymer composition achieves long-term stability, representing a significant advance over the typical one-month limitation of conventional coatings. These results establish piCVD antifouling coatings as an enabling technology for chronic neural interfaces in both basic neuroscience research and emerging neuroprosthetic applications.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"325 ","pages":"Article 123554"},"PeriodicalIF":12.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225004739","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible neural probes with integrated recording, optical stimulation, and drug delivery capabilities offer unprecedented access to neural circuit dynamics. However, their long-term utility is compromised by foreign body responses that isolate recording sites from target neurons. This study introduces photoinitiated chemical vapor deposition (piCVD) as a transformative approach to neural interface stability through ultrathin (<100 nm) anti-fouling coatings. Unlike conventional hydrogel coatings that impair electrical signal transmission, our piCVD-applied poly(2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) coating maintains electrical functionality by preserving low impedance while providing superior anti-fouling properties. In vitro protein adsorption studies demonstrated near-complete resistance to both albumin and fibrinogen compared to uncoated surfaces, with the coating maintaining stability even after 24 h of sonication—durability unachievable with conventional wet-chemistry methods. When evaluated in mouse models over three months, the coated probe maintained high-quality spontaneous neural recordings and optically evoked potentials throughout the study period, with signal-to-noise ratios improving from 18.0 at week 1–20.7 at week 13. This performance significantly correlates with 66.6 % reduction in glial scarring, 84.6 % increase in neuronal preservation compared to uncoated probes. The specific combination of CVD methodology and optimized copolymer composition achieves long-term stability, representing a significant advance over the typical one-month limitation of conventional coatings. These results establish piCVD antifouling coatings as an enabling technology for chronic neural interfaces in both basic neuroscience research and emerging neuroprosthetic applications.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.