Control strategies of hybrid RESs for off-grid water pumping technologies: An overview

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Haneen M. Bawayan , Mohamed A. Enany , Mahmoud M. Elymany , Ahmed A. Shaier , Marwa M. Ahmed
{"title":"Control strategies of hybrid RESs for off-grid water pumping technologies: An overview","authors":"Haneen M. Bawayan ,&nbsp;Mohamed A. Enany ,&nbsp;Mahmoud M. Elymany ,&nbsp;Ahmed A. Shaier ,&nbsp;Marwa M. Ahmed","doi":"10.1016/j.sciaf.2025.e02856","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid Renewable Energy Systems (HRESs) that combine photovoltaic (PV) and wind energy (WE) offer a sustainable solution for off-grid water pumping, particularly in remote or agricultural areas with limited or unreliable grid access. This review critically examines control strategies used in Hybrid Renewable Energy Water Pumping Systems (HREWPS), focusing on improvements in energy efficiency, reliability, cost-effectiveness, and adaptability to changing environmental conditions. The manuscript categorizes and compares a range of control methodologies. These include maximum power point tracking (MPPT) algorithms such as perturb and observe (P&amp;O), incremental conductance (IC), fuzzy logic, artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and swarm intelligence techniques. Advanced motor control methods like field-oriented control (FOC), direct torque control (DTC), scalar control, and sliding mode control are also reviewed. These techniques are evaluated across motor types including induction motors (IM), brushless DC motors (BLDCM), permanent magnet synchronous motors (PMSM), switched reluctance motors (SRM), synchronous reluctance motors (SynRM), and open-end induction motors (OEIM). This study also emphasizes battery-less configurations, hybrid storage systems, and AI-enhanced energy management frameworks that optimize real-time performance and increase system resilience. Emerging technologies such as model predictive control (MPC), IoT-based remote monitoring, and blockchain-enabled microgrid energy trading are discussed as future enablers for advanced HREWPS. By integrating recent advancements and experimental findings, this review outlines a roadmap for sustainable, intelligent, and adaptive off-grid water pumping systems. It underscores the role of smart control solutions in addressing global water and energy challenges.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02856"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625003254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid Renewable Energy Systems (HRESs) that combine photovoltaic (PV) and wind energy (WE) offer a sustainable solution for off-grid water pumping, particularly in remote or agricultural areas with limited or unreliable grid access. This review critically examines control strategies used in Hybrid Renewable Energy Water Pumping Systems (HREWPS), focusing on improvements in energy efficiency, reliability, cost-effectiveness, and adaptability to changing environmental conditions. The manuscript categorizes and compares a range of control methodologies. These include maximum power point tracking (MPPT) algorithms such as perturb and observe (P&O), incremental conductance (IC), fuzzy logic, artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and swarm intelligence techniques. Advanced motor control methods like field-oriented control (FOC), direct torque control (DTC), scalar control, and sliding mode control are also reviewed. These techniques are evaluated across motor types including induction motors (IM), brushless DC motors (BLDCM), permanent magnet synchronous motors (PMSM), switched reluctance motors (SRM), synchronous reluctance motors (SynRM), and open-end induction motors (OEIM). This study also emphasizes battery-less configurations, hybrid storage systems, and AI-enhanced energy management frameworks that optimize real-time performance and increase system resilience. Emerging technologies such as model predictive control (MPC), IoT-based remote monitoring, and blockchain-enabled microgrid energy trading are discussed as future enablers for advanced HREWPS. By integrating recent advancements and experimental findings, this review outlines a roadmap for sustainable, intelligent, and adaptive off-grid water pumping systems. It underscores the role of smart control solutions in addressing global water and energy challenges.
离网抽水技术的混合RESs控制策略综述
结合光伏(PV)和风能(WE)的混合可再生能源系统(HRESs)为离网抽水提供了可持续的解决方案,特别是在电网接入有限或不可靠的偏远或农业地区。本文主要研究了混合可再生能源抽水系统(HREWPS)中使用的控制策略,重点关注能源效率、可靠性、成本效益以及对不断变化的环境条件的适应性的提高。手稿对一系列控制方法进行了分类和比较。其中包括最大功率点跟踪(MPPT)算法,如扰动和观察(P&;O)、增量电导(IC)、模糊逻辑、人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和群体智能技术。本文还介绍了磁场定向控制(FOC)、直接转矩控制(DTC)、标量控制和滑模控制等先进的电机控制方法。对这些技术进行评估的电机类型包括感应电机(IM)、无刷直流电机(BLDCM)、永磁同步电机(PMSM)、开关磁阻电机(SRM)、同步磁阻电机(SynRM)和开放式感应电机(OEIM)。该研究还强调了无电池配置、混合存储系统和人工智能增强的能源管理框架,这些框架可以优化实时性能并提高系统弹性。新兴技术,如模型预测控制(MPC)、基于物联网的远程监控和支持区块链的微电网能源交易,作为先进HREWPS的未来推动因素进行了讨论。通过整合最近的进展和实验结果,本文概述了可持续、智能和自适应离网抽水系统的路线图。它强调了智能控制解决方案在应对全球水和能源挑战方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信