{"title":"Constraining scalars of 16H through proton decays in non-renormalisable SO(10) models","authors":"Saurabh K. Shukla","doi":"10.1016/j.nuclphysb.2025.117034","DOIUrl":null,"url":null,"abstract":"<div><div>Non-renormalisable versions of <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>10</mn><mo>)</mo></math></span> based on irreducible representations with lesser degrees of freedom, are free of running into the catastrophe of non-perturbativity of standard model gauge couplings in contrast to the renormalisable versions having tensors with many degrees of freedom. <span><math><msub><mrow><mn>16</mn></mrow><mrow><mi>H</mi></mrow></msub></math></span> is the smallest representation, participates in Yukawa Lagrangian at the non-renormalisable level, contributing to the charged and neutral fermion masses, and has six distinct scalars with different <span><math><mi>B</mi><mo>−</mo><mi>L</mi></math></span> charges. We computed the leptoquark and diquark couplings of different pairs of scalars stemming from all possible decomposition of the term resulting from the coupling of <span><math><msub><mrow><mn>16</mn></mrow><mrow><mi>H</mi></mrow></msub></math></span> with the <strong>16</strong> dimensional fermion multiplet of <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>10</mn><mo>)</mo></math></span>, i.e. <span><math><mfrac><mrow><mn>16</mn><mspace></mspace><mn>16</mn><mspace></mspace><msub><mrow><mn>16</mn></mrow><mrow><mi>H</mi></mrow></msub><mspace></mspace><msub><mrow><mn>16</mn></mrow><mrow><mi>H</mi></mrow></msub></mrow><mrow><mi>Λ</mi></mrow></mfrac></math></span>. Computing the tree and loop level contribution of different pairs to the effective dimension six, <span><math><mi>B</mi><mo>−</mo><mi>L</mi></math></span> conserving operators, it turns out only three pairs, viz <span><math><mi>σ</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo><mo>−</mo><mi>T</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span>, and <span><math><mi>H</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo><mo>−</mo><mi>Δ</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></math></span>, and <span><math><mi>H</mi><mo>−</mo><mi>T</mi></math></span> can induce proton decay at tree level. Assuming that the Yukawa couplings of the <span><math><msub><mrow><mn>16</mn></mrow><mrow><mi>H</mi></mrow></msub></math></span> are comparable to those of the <span><math><msub><mrow><mover><mrow><mn>126</mn></mrow><mo>‾</mo></mover></mrow><mrow><mi>H</mi></mrow></msub></math></span> of a realistic <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>10</mn><mo>)</mo></math></span> model and setting the cutoff scale to the Planck scale typically constrains the <span><math><mi>B</mi><mo>−</mo><mi>L</mi></math></span> breaking scale to be <span><math><mn>4</mn><mo>∼</mo><mn>5</mn></math></span> orders of magnitude less than the cutoff scale (Λ). Moreover, analysing the branching pattern of the leading two-body decay modes of the proton, we observed a preference for the proton to decay into second-generation mesons due to the hierarchical nature of Yukawa couplings. In a realistic <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>10</mn><mo>)</mo></math></span> scenario, we find that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>></mo><msup><mrow><mn>10</mn></mrow><mrow><mn>8</mn></mrow></msup></math></span> TeV, while <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span> could be as light as a few TeV<em>s</em>.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117034"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002433","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-renormalisable versions of based on irreducible representations with lesser degrees of freedom, are free of running into the catastrophe of non-perturbativity of standard model gauge couplings in contrast to the renormalisable versions having tensors with many degrees of freedom. is the smallest representation, participates in Yukawa Lagrangian at the non-renormalisable level, contributing to the charged and neutral fermion masses, and has six distinct scalars with different charges. We computed the leptoquark and diquark couplings of different pairs of scalars stemming from all possible decomposition of the term resulting from the coupling of with the 16 dimensional fermion multiplet of , i.e. . Computing the tree and loop level contribution of different pairs to the effective dimension six, conserving operators, it turns out only three pairs, viz , and , and can induce proton decay at tree level. Assuming that the Yukawa couplings of the are comparable to those of the of a realistic model and setting the cutoff scale to the Planck scale typically constrains the breaking scale to be orders of magnitude less than the cutoff scale (Λ). Moreover, analysing the branching pattern of the leading two-body decay modes of the proton, we observed a preference for the proton to decay into second-generation mesons due to the hierarchical nature of Yukawa couplings. In a realistic scenario, we find that TeV, while could be as light as a few TeVs.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.