Fan-complete Ramsey numbers

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Fan Chung , Qizhong Lin
{"title":"Fan-complete Ramsey numbers","authors":"Fan Chung ,&nbsp;Qizhong Lin","doi":"10.1016/j.aam.2025.102939","DOIUrl":null,"url":null,"abstract":"<div><div>For graphs <em>G</em> and <em>H</em>, we consider Ramsey numbers <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> with tight lower bounds, namely, <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mo>|</mo><mi>H</mi><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the chromatic number of <em>G</em> and <span><math><mo>|</mo><mi>H</mi><mo>|</mo></math></span> denotes the number of vertices in <em>H</em>. We say <em>H</em> is <em>G</em>-good if the equality holds.</div><div>Let <span><math><mi>G</mi><mo>+</mo><mi>H</mi></math></span> be the join graph obtained from graphs <em>G</em> and <em>H</em> by adding all edges between the disjoint vertex sets of <em>G</em> and <em>H</em>. Let <em>nH</em> denote the union graph of <em>n</em> disjoint copies of <em>H</em>. We show that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>n</mi><mi>H</mi></math></span> is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-good if <em>n</em> is sufficiently large. In particular, the fan-graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>n</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-good if <span><math><mi>n</mi><mo>=</mo><mi>Ω</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, improving previous tower-type lower bounds for <em>n</em> due to Li and Rousseau (1996). Moreover, we give a stronger lower bound inequality for Ramsey number <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>F</mi><mo>)</mo></math></span> for the case of <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, the complete <em>p</em>-partite graph with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. In particular, using a stability-supersaturation lemma by Fox, He and Wigderson (2023), we show that for any fixed graph <em>H</em>,<span><span><span><math><mrow><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>n</mi><mi>H</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mtable><mtr><mtd><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>|</mo><mi>H</mi><mo>|</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mtd></mtr><mtr><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>|</mo><mi>H</mi><mo>|</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mtext> is even</mtext></mrow></mtd></mtr><mtr><mtd><mspace></mspace><mrow><mtext>or </mtext><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mtext> is even,</mtext></mrow></mtd></mtr><mtr><mtd><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>|</mo><mi>H</mi><mo>|</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>2</mn><mo>)</mo><mo>+</mo><mn>1</mn><mspace></mspace><mtext>otherwise,</mtext></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s satisfying some mild conditions and <em>n</em> is sufficiently large. The special case of <span><math><mi>H</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> gives an answer to Burr's question (1981) about the discrepancy of <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span> from <em>G</em>-goodness for sufficiently large <em>n</em>. All bounds of <em>n</em> we obtain are not of tower-types.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102939"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For graphs G and H, we consider Ramsey numbers r(G,H) with tight lower bounds, namely, r(G,H)(χ(G)1)(|H|1)+1, where χ(G) denotes the chromatic number of G and |H| denotes the number of vertices in H. We say H is G-good if the equality holds.
Let G+H be the join graph obtained from graphs G and H by adding all edges between the disjoint vertex sets of G and H. Let nH denote the union graph of n disjoint copies of H. We show that K1+nH is Kp-good if n is sufficiently large. In particular, the fan-graph Fn=K1+nK2 is Kp-good if n=Ω(p2), improving previous tower-type lower bounds for n due to Li and Rousseau (1996). Moreover, we give a stronger lower bound inequality for Ramsey number r(G,K1+F) for the case of G=Kp(a1,a2,,ap), the complete p-partite graph with a1=1 and aiai+1. In particular, using a stability-supersaturation lemma by Fox, He and Wigderson (2023), we show that for any fixed graph H,r(G,K1+nH)={(p1)(n|H|+a21)+1if n|H|+a21 is evenor a21 is even,(p1)(n|H|+a22)+1otherwise, where G=Kp(1,a2,,ap) with ai's satisfying some mild conditions and n is sufficiently large. The special case of H=K1 gives an answer to Burr's question (1981) about the discrepancy of r(G,K1,n) from G-goodness for sufficiently large n. All bounds of n we obtain are not of tower-types.
球迷完整的拉姆齐号码
对于图G和图H,我们考虑具有紧下界的拉姆齐数r(G,H),即r(G,H)≥(χ(G)−1)(|H|−1)+1,其中χ(G)表示G的色数,|H|表示H中的顶点数,如果等式成立,我们说H是G-好的。设G+H为图G和图H通过将G和H的不相交顶点集之间的所有边相加得到的连接图,设nH为n个H的不相交副本的并集图。我们证明,如果n足够大,K1+nH是Kp-good。特别是,当n=Ω(p2)时,扇形图Fn=K1+nK2是Kp-good,改进了Li和Rousseau(1996)提出的n的塔式下界。此外,对于G=Kp(a1,a2,…,ap), a1=1且ai≤ai+1的完全p部图,我们给出了拉姆齐数r(G,K1+F)的一个更强的下界不等式。特别地,我们利用Fox, He和Wigderson(2023)的稳定性过饱和引证,证明了对于任意固定图H,r(G,K1+nH)={(p−1)(n|H|+a2−1)+1if n|H|+a2−1是偶的,或者a2−1是偶的,(p−1)(n|H|+a2−2)+1,否则(p−1)(n|H|+a2−2)+1,其中G=Kp(1,a2,…,ap),且ai满足一些温和条件且n足够大。H=K1的特殊情况回答了Burr(1981)关于当n足够大时r(G,K1,n)与G-good的差异的问题。我们得到的n的所有界都不是塔型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信