{"title":"Fan-complete Ramsey numbers","authors":"Fan Chung , Qizhong Lin","doi":"10.1016/j.aam.2025.102939","DOIUrl":null,"url":null,"abstract":"<div><div>For graphs <em>G</em> and <em>H</em>, we consider Ramsey numbers <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> with tight lower bounds, namely, <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mo>|</mo><mi>H</mi><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the chromatic number of <em>G</em> and <span><math><mo>|</mo><mi>H</mi><mo>|</mo></math></span> denotes the number of vertices in <em>H</em>. We say <em>H</em> is <em>G</em>-good if the equality holds.</div><div>Let <span><math><mi>G</mi><mo>+</mo><mi>H</mi></math></span> be the join graph obtained from graphs <em>G</em> and <em>H</em> by adding all edges between the disjoint vertex sets of <em>G</em> and <em>H</em>. Let <em>nH</em> denote the union graph of <em>n</em> disjoint copies of <em>H</em>. We show that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>n</mi><mi>H</mi></math></span> is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-good if <em>n</em> is sufficiently large. In particular, the fan-graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>n</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-good if <span><math><mi>n</mi><mo>=</mo><mi>Ω</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, improving previous tower-type lower bounds for <em>n</em> due to Li and Rousseau (1996). Moreover, we give a stronger lower bound inequality for Ramsey number <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>F</mi><mo>)</mo></math></span> for the case of <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, the complete <em>p</em>-partite graph with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. In particular, using a stability-supersaturation lemma by Fox, He and Wigderson (2023), we show that for any fixed graph <em>H</em>,<span><span><span><math><mrow><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>n</mi><mi>H</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mtable><mtr><mtd><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>|</mo><mi>H</mi><mo>|</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mtd></mtr><mtr><mtd><mspace></mspace><mrow><mtext>if </mtext><mi>n</mi><mo>|</mo><mi>H</mi><mo>|</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mtext> is even</mtext></mrow></mtd></mtr><mtr><mtd><mspace></mspace><mrow><mtext>or </mtext><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mtext> is even,</mtext></mrow></mtd></mtr><mtr><mtd><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>|</mo><mi>H</mi><mo>|</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>2</mn><mo>)</mo><mo>+</mo><mn>1</mn><mspace></mspace><mtext>otherwise,</mtext></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s satisfying some mild conditions and <em>n</em> is sufficiently large. The special case of <span><math><mi>H</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> gives an answer to Burr's question (1981) about the discrepancy of <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span> from <em>G</em>-goodness for sufficiently large <em>n</em>. All bounds of <em>n</em> we obtain are not of tower-types.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102939"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For graphs G and H, we consider Ramsey numbers with tight lower bounds, namely, , where denotes the chromatic number of G and denotes the number of vertices in H. We say H is G-good if the equality holds.
Let be the join graph obtained from graphs G and H by adding all edges between the disjoint vertex sets of G and H. Let nH denote the union graph of n disjoint copies of H. We show that is -good if n is sufficiently large. In particular, the fan-graph is -good if , improving previous tower-type lower bounds for n due to Li and Rousseau (1996). Moreover, we give a stronger lower bound inequality for Ramsey number for the case of , the complete p-partite graph with and . In particular, using a stability-supersaturation lemma by Fox, He and Wigderson (2023), we show that for any fixed graph H, where with 's satisfying some mild conditions and n is sufficiently large. The special case of gives an answer to Burr's question (1981) about the discrepancy of from G-goodness for sufficiently large n. All bounds of n we obtain are not of tower-types.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.