Stability of weighted log canonical threshold of plurisubharmonic functions

IF 1.2 3区 数学 Q1 MATHEMATICS
Trinh Tung
{"title":"Stability of weighted log canonical threshold of plurisubharmonic functions","authors":"Trinh Tung","doi":"10.1016/j.jmaa.2025.129887","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>φ</em> be a plurisubharmonic function on an open subset <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We know that <em>φ</em> has a singularity at point <em>a</em> if <span><math><mi>φ</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo>∞</mo></math></span>. Two of the most important measures of singularities are the Lelong number and the log canonical threshold. In this article, we study the stability of weighted log canonical thresholds <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>φ</mi><mo>)</mo></math></span> with measure <span><math><mi>μ</mi><mo>=</mo><msup><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mo>|</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>t</mi></mrow></msup><mi>d</mi><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> for any <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>. The result obtained leads to a principle for comparing Nadel's multiplier ideal sheaves.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129887"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006687","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let φ be a plurisubharmonic function on an open subset ΩCn. We know that φ has a singularity at point a if φ(a)=. Two of the most important measures of singularities are the Lelong number and the log canonical threshold. In this article, we study the stability of weighted log canonical thresholds cμ(φ) with measure μ=(k=1m|fk|2)tdV2n for any tR. The result obtained leads to a principle for comparing Nadel's multiplier ideal sheaves.
多次调和函数加权对数正则阈值的稳定性
设φ是开子集Ω∧Cn上的一个多次谐波函数。我们知道,当φ(a)=−∞时,φ在点a处有奇点。奇点的两个最重要的度量是Lelong数和对数正则阈值。本文研究了对于任意t∈R,测度为μ=(∑k=1m|fk|2)tdV2n的加权对数正则阈值cμ(φ)的稳定性。所得结果为比较纳达尔乘数理想轴提供了一个原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信