Positive periodic solutions for systems of linear functional differential inequalities

IF 1.2 3区 数学 Q1 MATHEMATICS
Robert Hakl , José Oyarce
{"title":"Positive periodic solutions for systems of linear functional differential inequalities","authors":"Robert Hakl ,&nbsp;José Oyarce","doi":"10.1016/j.jmaa.2025.129882","DOIUrl":null,"url":null,"abstract":"<div><div>Consider the system of functional differential inequalities<span><span><span><math><mi>D</mi><mo>(</mo><mi>σ</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>ℓ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo><mo>≥</mo><mn>0</mn><mspace></mspace><mtext>for a. e. </mtext><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></math></span></span></span> where <span><math><mi>ℓ</mi><mo>:</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is a linear bounded operator, <span><math><mi>σ</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, and <span><math><mi>D</mi><mo>(</mo><mi>σ</mi><mo>)</mo><mo>=</mo><mi>diag</mi><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>. In the present paper, we establish conditions guaranteeing that there exists <span><math><mi>c</mi><mo>∈</mo><mspace></mspace><mo>]</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>[</mo></math></span> such that every absolutely continuous <em>ω</em>-periodic vector-valued function <span><math><mi>u</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> satisfying the above-mentioned differential inequality belongs to a cone<span><span><span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>:</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>≥</mo><mi>c</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mspace></mspace><mtext> for </mtext><mspace></mspace><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi><mspace></mspace><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We denote the set of periodic linear operators <em>ℓ</em> with the above property by <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span>. We further show that the set <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> is bounded from above, i.e., for every operator <span><math><mi>ℓ</mi><mo>∈</mo><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> and every <em>σ</em>-positive periodic operator <span><math><mover><mrow><mi>ℓ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> there exists a positive threshold value <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> such that <span><math><mi>ℓ</mi><mo>+</mo><mi>λ</mi><mover><mrow><mi>ℓ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> belongs to <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> or does not, depending on whether the parameter <em>λ</em> is below or above <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Finally, we propose a numerical method how to estimate the threshold <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> in particular cases. This method is described and illustrated by several examples. Possible applications to population models are discussed in the end of the paper.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129882"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006638","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the system of functional differential inequalitiesD(σ)[u(t)(u)(t)]0for a. e. tR, where :Cω(Rn)Lω(Rn) is a linear bounded operator, σ=(σi)i=1n where σi{1,1}, and D(σ)=diag(σ1,,σn). In the present paper, we establish conditions guaranteeing that there exists c]0,1[ such that every absolutely continuous ω-periodic vector-valued function u=(ui)i=1n satisfying the above-mentioned differential inequality belongs to a coneKcn={uCω(Rn):ui(s)cui(t) for s,tR(i=1,,n)}. We denote the set of periodic linear operators with the above property by Ucn(σ). We further show that the set Ucn(σ) is bounded from above, i.e., for every operator Ucn(σ) and every σ-positive periodic operator ˜ there exists a positive threshold value λ such that +λ˜ belongs to Ucn(σ) or does not, depending on whether the parameter λ is below or above λ. Finally, we propose a numerical method how to estimate the threshold λ in particular cases. This method is described and illustrated by several examples. Possible applications to population models are discussed in the end of the paper.
线性泛函微分不等式系统的正周期解
考虑对于a. e. t∈R的泛函微分不等式系统D(σ)[u ' (t)−R (u)(t)]≥0,其中,R:Cω(Rn)→Lω(Rn)是一个线性有界算子,σ =(σi)i=1n,其中σi∈{- 1,1},D(σ)=diag(σ1,…,σn)。在本文中,我们建立了c∈]0,1的条件,使得每一个绝对连续的ω-周期向量值函数u=(ui)i=1n满足上述微分不等式,属于一个coneKcn={u∈c ω(Rn):对于s,t∈R(i=1,…,n)}, ui(s)≥cui(t)。我们用Ucn(σ)表示具有上述性质的周期线性算子集合。我们进一步证明了集合Ucn(σ)是从上有界的,即对于每个算子r∈Ucn(σ)和每个σ-正周期算子r≈存在一个正阈值λ λ,使得r +λ λ λ≈属于或不属于Ucn(σ),这取决于参数λ是在λ λ之上还是在λ λ之上。最后,我们提出了一种在特定情况下如何估计阈值λ λ的数值方法。通过几个实例对该方法进行了描述和说明。本文最后讨论了在人口模型中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信