Innovative approaches to biohydrogen production from organic waste: pathways and sustainability challenges

Mobina Rostampour Gabanki, Hossein Yousefi, Ahmad Hajinezhad, Mahmood Abdoos, Shayan Mohammaddini
{"title":"Innovative approaches to biohydrogen production from organic waste: pathways and sustainability challenges","authors":"Mobina Rostampour Gabanki,&nbsp;Hossein Yousefi,&nbsp;Ahmad Hajinezhad,&nbsp;Mahmood Abdoos,&nbsp;Shayan Mohammaddini","doi":"10.1016/j.wmb.2025.100227","DOIUrl":null,"url":null,"abstract":"<div><div>Biohydrogen production from organic waste offers a sustainable alternative to fossil fuel-derived hydrogen, contributing to the transition toward clean energy. This study explores advancements in microbial engineering, hybrid fermentation, and reactor optimization to enhance hydrogen yields and process efficiency. The objective is to develop innovative biohydrogen production methods that maximize substrate conversion efficiency while ensuring economic feasibility. Key innovations includenanoparticle-assisted hydrogenase activation, and hybrid fermentation integrating dark fermentation with microbial electrolysis cells (MECs) and photofermentation. Advanced continuous stirred tank reactors (CSTRs) and packed-bed bioreactors significantly improve hydrogen production. Results show hydrogen yields of 20–50 L H<sub>2</sub>/kg volatile solids (VS), with optimized systems increasing conversion efficiency by up to 35 %. Aspen HYSYS modeling identifies peak production at pH 5 and mesophilic temperatures (35–40 °C). A SimaPro-based life cycle assessment (LCA) reveals a global warming potential (GWP) reduction of −1.2E3 kg CO<sub>2</sub> per ton of MSW and a resource impact benefit of −67 USD per ton, demonstrating economic feasibility. This study supports biohydrogen’s scalability as a waste-to-energy solution, aligning with circular bioeconomy principles. Future research should focus on microbial robustness, hybrid biorefineries, and AI-driven process control for enhanced sustainability. The findings position biohydrogen as a cost-effective and environmentally friendly clean energy source, accelerating global decarbonization efforts.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 3","pages":"Article 100227"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750725000562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biohydrogen production from organic waste offers a sustainable alternative to fossil fuel-derived hydrogen, contributing to the transition toward clean energy. This study explores advancements in microbial engineering, hybrid fermentation, and reactor optimization to enhance hydrogen yields and process efficiency. The objective is to develop innovative biohydrogen production methods that maximize substrate conversion efficiency while ensuring economic feasibility. Key innovations includenanoparticle-assisted hydrogenase activation, and hybrid fermentation integrating dark fermentation with microbial electrolysis cells (MECs) and photofermentation. Advanced continuous stirred tank reactors (CSTRs) and packed-bed bioreactors significantly improve hydrogen production. Results show hydrogen yields of 20–50 L H2/kg volatile solids (VS), with optimized systems increasing conversion efficiency by up to 35 %. Aspen HYSYS modeling identifies peak production at pH 5 and mesophilic temperatures (35–40 °C). A SimaPro-based life cycle assessment (LCA) reveals a global warming potential (GWP) reduction of −1.2E3 kg CO2 per ton of MSW and a resource impact benefit of −67 USD per ton, demonstrating economic feasibility. This study supports biohydrogen’s scalability as a waste-to-energy solution, aligning with circular bioeconomy principles. Future research should focus on microbial robustness, hybrid biorefineries, and AI-driven process control for enhanced sustainability. The findings position biohydrogen as a cost-effective and environmentally friendly clean energy source, accelerating global decarbonization efforts.
从有机废物中生产生物氢的创新方法:途径和可持续性挑战
从有机废物中生产生物氢是化石燃料衍生氢的可持续替代品,有助于向清洁能源过渡。本研究探讨了微生物工程、混合发酵和反应器优化方面的进展,以提高氢气产量和工艺效率。目标是开发创新的生物制氢方法,最大限度地提高基质转化效率,同时确保经济可行性。关键的创新包括微粒辅助氢化酶激活,以及将暗发酵与微生物电解细胞(MECs)和光发酵相结合的混合发酵。先进的连续搅拌槽反应器(cstr)和填料床生物反应器显著提高了产氢率。结果表明,优化后的系统可将转化效率提高35%,氢气产率为20-50 L H2/kg挥发性固体(VS)。Aspen HYSYS模型确定了pH值为5和中温温度(35-40°C)时的峰值产量。基于simapro的生命周期评估(LCA)显示,每吨城市生活垃圾减少全球变暖潜能值(GWP)为- 1.23千克二氧化碳,每吨资源影响效益为- 67美元,证明了经济可行性。这项研究支持生物氢作为废物转化能源解决方案的可扩展性,符合循环生物经济原则。未来的研究应该集中在微生物稳健性、混合生物炼制和人工智能驱动的过程控制上,以提高可持续性。这一发现将生物氢定位为一种具有成本效益和环境友好的清洁能源,加速了全球脱碳的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信