Fast algorithms for Vizing's theorem on bounded degree graphs

IF 1.2 1区 数学 Q1 MATHEMATICS
Anton Bernshteyn , Abhishek Dhawan
{"title":"Fast algorithms for Vizing's theorem on bounded degree graphs","authors":"Anton Bernshteyn ,&nbsp;Abhishek Dhawan","doi":"10.1016/j.jctb.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Vizing's theorem states that every graph <em>G</em> of maximum degree Δ can be properly edge-colored using <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> colors. The fastest currently known <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time <span><math><mi>O</mi><mo>(</mo><mi>m</mi><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>≔</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><mi>m</mi><mo>≔</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. We investigate the case when Δ is constant, i.e., <span><math><mi>Δ</mi><mo>=</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In this regime, the runtime of Sinnamon's algorithm is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which can be improved to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>, as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, which is obviously best possible. Prior to this work, no linear-time <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm was known for any <span><math><mi>Δ</mi><mo>⩾</mo><mn>4</mn></math></span>. Using some of the same ideas, we also develop new algorithms for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring in the <span><math><mi>LOCAL</mi></math></span> model of distributed computation. Namely, when Δ is constant, we design a deterministic <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> and a randomized <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>. Although our focus is on the constant Δ regime, our results remain interesting for Δ up to <span><math><msup><mrow><mi>log</mi></mrow><mrow><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, since the dependence of their running time on Δ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 69-125"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000516","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Vizing's theorem states that every graph G of maximum degree Δ can be properly edge-colored using Δ+1 colors. The fastest currently known (Δ+1)-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time O(mn), where n|V(G)| and m|E(G)|. We investigate the case when Δ is constant, i.e., Δ=O(1). In this regime, the runtime of Sinnamon's algorithm is O(n3/2), which can be improved to O(nlogn), as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only O(n), which is obviously best possible. Prior to this work, no linear-time (Δ+1)-edge-coloring algorithm was known for any Δ4. Using some of the same ideas, we also develop new algorithms for (Δ+1)-edge-coloring in the LOCAL model of distributed computation. Namely, when Δ is constant, we design a deterministic LOCAL algorithm with running time O˜(log5n) and a randomized LOCAL algorithm with running time O(log2n). Although our focus is on the constant Δ regime, our results remain interesting for Δ up to logo(1)n, since the dependence of their running time on Δ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.
有界度图上Vizing定理的快速算法
Vizing定理指出,每个最大次为Δ的图G都可以使用Δ+1种颜色来适当地边缘着色。目前已知的最快(Δ+1)的一般图边着色算法是由Sinnamon提出的,运行时间为O(mn),其中n是对象是|V(G)|, m是对象是|E(G)|。我们研究了Δ为常数的情况,即Δ=O(1)。在这种情况下,Sinnamon算法的运行时间为O(n3/2),可以改进为O(nlog ln n),如Gabow、Nishizeki、Kariv、Leven和Terada所示。这里我们给出一个算法,它的运行时间只有O(n),这显然是最好的可能。在这项工作之前,对于任何Δ大于或等于4的人来说,没有已知的线性时间(Δ+1)边缘着色算法。利用一些相同的思想,我们还在分布式计算的LOCAL模型中开发了(Δ+1)-边缘着色的新算法。即,当Δ为常数时,我们设计了一个运行时间为O ~ (log5 ln)的确定性LOCAL算法和一个运行时间为O(log2 ln)的随机LOCAL算法。虽然我们关注的是常数Δ状态,但我们的结果对于Δ到logo(1) n来说仍然很有趣,因为它们的运行时间对Δ的依赖是多项式的。我们的算法的关键新成分是熵压缩方法的新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信