{"title":"Fast algorithms for Vizing's theorem on bounded degree graphs","authors":"Anton Bernshteyn , Abhishek Dhawan","doi":"10.1016/j.jctb.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Vizing's theorem states that every graph <em>G</em> of maximum degree Δ can be properly edge-colored using <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> colors. The fastest currently known <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time <span><math><mi>O</mi><mo>(</mo><mi>m</mi><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>, where <span><math><mi>n</mi><mo>≔</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> and <span><math><mi>m</mi><mo>≔</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. We investigate the case when Δ is constant, i.e., <span><math><mi>Δ</mi><mo>=</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In this regime, the runtime of Sinnamon's algorithm is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which can be improved to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>, as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, which is obviously best possible. Prior to this work, no linear-time <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring algorithm was known for any <span><math><mi>Δ</mi><mo>⩾</mo><mn>4</mn></math></span>. Using some of the same ideas, we also develop new algorithms for <span><math><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-edge-coloring in the <span><math><mi>LOCAL</mi></math></span> model of distributed computation. Namely, when Δ is constant, we design a deterministic <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>5</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span> and a randomized <span><math><mi>LOCAL</mi></math></span> algorithm with running time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span>. Although our focus is on the constant Δ regime, our results remain interesting for Δ up to <span><math><msup><mrow><mi>log</mi></mrow><mrow><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo></mo><mi>n</mi></math></span>, since the dependence of their running time on Δ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 69-125"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000516","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Vizing's theorem states that every graph G of maximum degree Δ can be properly edge-colored using colors. The fastest currently known -edge-coloring algorithm for general graphs is due to Sinnamon and runs in time , where and . We investigate the case when Δ is constant, i.e., . In this regime, the runtime of Sinnamon's algorithm is , which can be improved to , as shown by Gabow, Nishizeki, Kariv, Leven, and Terada. Here we give an algorithm whose running time is only , which is obviously best possible. Prior to this work, no linear-time -edge-coloring algorithm was known for any . Using some of the same ideas, we also develop new algorithms for -edge-coloring in the model of distributed computation. Namely, when Δ is constant, we design a deterministic algorithm with running time and a randomized algorithm with running time . Although our focus is on the constant Δ regime, our results remain interesting for Δ up to , since the dependence of their running time on Δ is polynomial. The key new ingredient in our algorithms is a novel application of the entropy compression method.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.