Jiuke Chen , Sandro Lehner , Sin Yong Teng , Sabyasachi Gaan , Daniele Passerone , Manfred Heuberger , Ali Gooneie
{"title":"Thermal decomposition mechanisms of phosphorus flame retardants: A combined theoretical and experimental approach","authors":"Jiuke Chen , Sandro Lehner , Sin Yong Teng , Sabyasachi Gaan , Daniele Passerone , Manfred Heuberger , Ali Gooneie","doi":"10.1016/j.polymdegradstab.2025.111543","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphorus flame retardants (PFRs) are one of the main candidates for a fully organic, sustainable replacement to traditional halogenated FRs. However, their unexpected decomposition remains an open challenge hindering their full potential for sustainable applications in polymers. To address this issue, thermal decomposition of two common PFRs, namely 6H-Dibenz[c,e][1,2]oxaphosphorin, 6-[(1-oxido-2,6,7-trioxa-1-phospha bicyclo[2.2.2]oct‑4-yl)methoxy]-, 6-oxide (DOPO-PEPA) and Aflammit PCO 900 (AF), was studied using density functional theory (DFT) coupled with experimental methods, particularly the direct inlet probe-mass spectrometry (DIP-MS). The DIP-MS spectra were processed and analyzed using algorithms to identify potential decomposition products of DOPO-PEPA and AF. Under inert atmospheric conditions, bond dissociation and proton attack were identified as the predominant decomposition pathways. Geometries of intermediates, transition states, and products along potential energy surfaces were identified through DFT calculations. For DOPO-PEPA, the dissociation of the C<img>O bond linking the DOPO and PEPA moieties was identified as the most kinetically favored dissociation pathway; while for AF, bond dissociation was found energetically demanding. On the other hand, protonation processes demonstrate more dependence on the availability of protons. Cross-validating computational results with experimental observations verified the pathways through which DOPO-PEPA and AF release phosphorus-containing species and other decomposition products. Benefitting from a combination of fundamental molecular models and experimental evidence, this study provides new insights into the molecular mechanisms of thermal degradation of PFRs, thus providing a template for developing new FRs with enhanced thermal stability.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"241 ","pages":"Article 111543"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025003726","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus flame retardants (PFRs) are one of the main candidates for a fully organic, sustainable replacement to traditional halogenated FRs. However, their unexpected decomposition remains an open challenge hindering their full potential for sustainable applications in polymers. To address this issue, thermal decomposition of two common PFRs, namely 6H-Dibenz[c,e][1,2]oxaphosphorin, 6-[(1-oxido-2,6,7-trioxa-1-phospha bicyclo[2.2.2]oct‑4-yl)methoxy]-, 6-oxide (DOPO-PEPA) and Aflammit PCO 900 (AF), was studied using density functional theory (DFT) coupled with experimental methods, particularly the direct inlet probe-mass spectrometry (DIP-MS). The DIP-MS spectra were processed and analyzed using algorithms to identify potential decomposition products of DOPO-PEPA and AF. Under inert atmospheric conditions, bond dissociation and proton attack were identified as the predominant decomposition pathways. Geometries of intermediates, transition states, and products along potential energy surfaces were identified through DFT calculations. For DOPO-PEPA, the dissociation of the CO bond linking the DOPO and PEPA moieties was identified as the most kinetically favored dissociation pathway; while for AF, bond dissociation was found energetically demanding. On the other hand, protonation processes demonstrate more dependence on the availability of protons. Cross-validating computational results with experimental observations verified the pathways through which DOPO-PEPA and AF release phosphorus-containing species and other decomposition products. Benefitting from a combination of fundamental molecular models and experimental evidence, this study provides new insights into the molecular mechanisms of thermal degradation of PFRs, thus providing a template for developing new FRs with enhanced thermal stability.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.