Wanyi Zhao , Ning Chen , Yunxi Huang , Ce Xing , Xiaolong Luo , Yongfeng Zhi , He Li , Yuwei Zhang
{"title":"Highly porous and chemically stable covalent organic frameworks with designable vertex skeletons for enhanced gas capture","authors":"Wanyi Zhao , Ning Chen , Yunxi Huang , Ce Xing , Xiaolong Luo , Yongfeng Zhi , He Li , Yuwei Zhang","doi":"10.1016/j.micromeso.2025.113766","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) represent a class of porous crystalline materials distinguished by their exceptionally high surface areas and well-defined ordered structures. Constructed from organic molecules interconnected through covalent bonds, COFs possess precisely tunable pore sizes, shapes, and functional groups, making them highly versatile candidates for gas capture applications. In this study, two vertex units were designed and incorporated into imine-based COF frameworks to construct highly conjugated structures, achieving exceptional porosity with a BET surface area of up to 1810 m<sup>2</sup>/g. Moreover, the synthesized COFs demonstrate remarkable chemical stability under extreme acidic and basic conditions. Notably, the resulting TB-COFs exhibit exceptional propane uptake of 197.2 cm<sup>3</sup>/g and iodine adsorption capacity of 5.6 g/g, positioning them among the top-performing COFs reported to date. These outstanding adsorption performances are attributed primarily to the large accessible surface area and strong affinity between the COF frameworks and iodine molecules.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"397 ","pages":"Article 113766"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125002811","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) represent a class of porous crystalline materials distinguished by their exceptionally high surface areas and well-defined ordered structures. Constructed from organic molecules interconnected through covalent bonds, COFs possess precisely tunable pore sizes, shapes, and functional groups, making them highly versatile candidates for gas capture applications. In this study, two vertex units were designed and incorporated into imine-based COF frameworks to construct highly conjugated structures, achieving exceptional porosity with a BET surface area of up to 1810 m2/g. Moreover, the synthesized COFs demonstrate remarkable chemical stability under extreme acidic and basic conditions. Notably, the resulting TB-COFs exhibit exceptional propane uptake of 197.2 cm3/g and iodine adsorption capacity of 5.6 g/g, positioning them among the top-performing COFs reported to date. These outstanding adsorption performances are attributed primarily to the large accessible surface area and strong affinity between the COF frameworks and iodine molecules.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.