Investigations on the tooth surface deviations of internal whirling-enveloped TI worm

IF 5.4 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Zhenglin Yang, Yonghong Chen, Diao Chen, Wenjun Luo, Bingkui Chen
{"title":"Investigations on the tooth surface deviations of internal whirling-enveloped TI worm","authors":"Zhenglin Yang,&nbsp;Yonghong Chen,&nbsp;Diao Chen,&nbsp;Wenjun Luo,&nbsp;Bingkui Chen","doi":"10.1016/j.cirpj.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Toroidal involute worm (TI worm) exhibits high load-bearing capacity and transmission efficiency. However, its complex spatial geometry complicates machining processes and limits mass production. This study combines the enveloping principle of the TI worm with the internal whirling technique. A novel method is developed for enveloping the TI worm via internal whirling. The influence of tool offsets and mounting angles on the tooth surface deviations between internal whirling-enveloped TI worm and standard TI worm is investigated. The results indicate that the tooth surface of the internal whirling-enveloped TI worm closely approximates that of modified standard TI worm. The amount and position of the modification can be effectively controlled through tool offset and mounting angle adjustments. Experimental measurements reveal a maximum tooth surface deviation below 0.04 mm. The machined worm meshes in the middle of the involute helical gear, reducing offset load risks. Comparative tests confirm comparable transmission performance between machined worm and standard TI worm. This study establishes theoretical and experimental foundations for mass production of TI worm via internal whirling to meet industrial demands.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"61 ","pages":"Pages 410-426"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725001130","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Toroidal involute worm (TI worm) exhibits high load-bearing capacity and transmission efficiency. However, its complex spatial geometry complicates machining processes and limits mass production. This study combines the enveloping principle of the TI worm with the internal whirling technique. A novel method is developed for enveloping the TI worm via internal whirling. The influence of tool offsets and mounting angles on the tooth surface deviations between internal whirling-enveloped TI worm and standard TI worm is investigated. The results indicate that the tooth surface of the internal whirling-enveloped TI worm closely approximates that of modified standard TI worm. The amount and position of the modification can be effectively controlled through tool offset and mounting angle adjustments. Experimental measurements reveal a maximum tooth surface deviation below 0.04 mm. The machined worm meshes in the middle of the involute helical gear, reducing offset load risks. Comparative tests confirm comparable transmission performance between machined worm and standard TI worm. This study establishes theoretical and experimental foundations for mass production of TI worm via internal whirling to meet industrial demands.
内旋包络TI蜗杆齿面偏差的研究
环面渐开线蜗杆具有较高的承载能力和传动效率。然而,其复杂的空间几何形状使加工过程复杂化,限制了批量生产。本研究将TI蜗杆的包络原理与内旋技术相结合。提出了一种利用内旋包络TI蜗杆的新方法。研究了刀具偏移量和安装角度对内旋包络TI蜗杆与标准TI蜗杆齿面偏差的影响。结果表明,内旋包络TI蜗杆的齿面与改进的标准TI蜗杆齿面非常接近。通过调整刀具偏移和安装角度,可以有效地控制修正量和位置。实验测量显示,最大齿面偏差小于0.04 mm。加工后的蜗杆啮合在渐开线斜齿轮的中间,减少了偏置负载的风险。对比试验证实,加工蜗杆与标准TI蜗杆的传动性能相当。本研究为大规模生产TI内旋蜗杆以满足工业需求奠定了理论和实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信