Some discrete solitons and interaction dynamical behaviors for a PT-symmetric discrete nonlocal nonlinear Schrödinger equation

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Jingwe Yu, Li Li, Fajunn Yu, Kai Cui
{"title":"Some discrete solitons and interaction dynamical behaviors for a PT-symmetric discrete nonlocal nonlinear Schrödinger equation","authors":"Jingwe Yu,&nbsp;Li Li,&nbsp;Fajunn Yu,&nbsp;Kai Cui","doi":"10.1016/j.aml.2025.109680","DOIUrl":null,"url":null,"abstract":"<div><div>At present, there have been many achievements on the study of integrable nonlocal nonlinear Schrödinger (NNLS) equation, which can enrich the mathematical structure of the NNLS equation by adding the discrete conditions. Ablowitz proposed a method to solve the nonlocal discrete Schrödinger equation under decaying boundary conditions by using the inverse scattering transformation. At this stage, there are few work of the discrete nonlocal nonlinear Schrödinger(DNNLS) equation with PT-symmetric. A detailed study of the DNNLS equation with PT-symmetric under fast decaying boundary conditions is carried out by using Darboux transformation method, which obtains the novel formulation of the soliton solution with the 2 × 2 Lax pairs, then some dynamical behaviors of the novel soliton solutions are analyzed by selecting different seed solutions and the wave parameters.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109680"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002307","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

At present, there have been many achievements on the study of integrable nonlocal nonlinear Schrödinger (NNLS) equation, which can enrich the mathematical structure of the NNLS equation by adding the discrete conditions. Ablowitz proposed a method to solve the nonlocal discrete Schrödinger equation under decaying boundary conditions by using the inverse scattering transformation. At this stage, there are few work of the discrete nonlocal nonlinear Schrödinger(DNNLS) equation with PT-symmetric. A detailed study of the DNNLS equation with PT-symmetric under fast decaying boundary conditions is carried out by using Darboux transformation method, which obtains the novel formulation of the soliton solution with the 2 × 2 Lax pairs, then some dynamical behaviors of the novel soliton solutions are analyzed by selecting different seed solutions and the wave parameters.
pt对称离散非局部非线性Schrödinger方程的离散孤子及其相互作用动力学行为
目前,对可积非局部非线性Schrödinger (NNLS)方程的研究已经取得了许多成果,通过增加离散条件可以丰富NNLS方程的数学结构。Ablowitz提出了一种利用逆散射变换求解衰减边界条件下非局部离散Schrödinger方程的方法。目前对pt对称离散非局部非线性Schrödinger(DNNLS)方程的研究很少。利用Darboux变换方法对具有pt对称的DNNLS方程在快衰减边界条件下进行了详细的研究,得到了具有2 × 2 Lax对的新孤子解的表达式,并通过选择不同的种子解和波参数分析了新孤子解的动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信