{"title":"Multi-Heteroatom-Doping and Defect Co-Engineered Hollow Carbon Nanocages for Ultralong-Cycle Zinc-Air Batteries.","authors":"Xia Chen,Jingyu Guan,Yong Zheng,Ruifeng Chen,Minghui Lv,Yan Yan,Min Chen,Mingkai Liu,Xinlong Tian,Liqun Ye","doi":"10.1021/acs.nanolett.5c02855","DOIUrl":null,"url":null,"abstract":"Developing cost-effective oxygen reduction reaction (ORR) electrocatalysts with simultaneously enhanced activity and durability remains a critical challenge for zinc-air batteries (ZABs). Herein, a multi-heteroatom-doping and defect co-engineering strategy is proposed to construct nitrogen, phosphorus, and sulfur tridoped hollow carbon nanocages (NPS-HCs) through a facile template-induced pyrolysis of a ZIF-8@PZS precursor. The synergistic effect of multi-heteroatom doping and introducing defects creates abundant active species, while the hollow architecture facilitates mass/electron transport during the ORR process. As a result, the optimized NPS-HC-900 catalyst demonstrates exceptional ORR performance with a high half-wave potential (E1/2 = 0.87 V vs RHE). Impressively, the NPS-HC-900 + IrO2-assembled rechargeable ZABs achieve an ultralong cycling stability over 1000 h. In situ spectroscopy and theoretical calculations verify that this synergistic effect promotes the conversion of key intermediate *OOH to *O, thereby significantly facilitating the ORR o. This work provides a paradigm-shifting platform for designing high-performance multi-heteroatom-doped carbon electrocatalysts via synergistic defect engineering.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"7 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02855","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing cost-effective oxygen reduction reaction (ORR) electrocatalysts with simultaneously enhanced activity and durability remains a critical challenge for zinc-air batteries (ZABs). Herein, a multi-heteroatom-doping and defect co-engineering strategy is proposed to construct nitrogen, phosphorus, and sulfur tridoped hollow carbon nanocages (NPS-HCs) through a facile template-induced pyrolysis of a ZIF-8@PZS precursor. The synergistic effect of multi-heteroatom doping and introducing defects creates abundant active species, while the hollow architecture facilitates mass/electron transport during the ORR process. As a result, the optimized NPS-HC-900 catalyst demonstrates exceptional ORR performance with a high half-wave potential (E1/2 = 0.87 V vs RHE). Impressively, the NPS-HC-900 + IrO2-assembled rechargeable ZABs achieve an ultralong cycling stability over 1000 h. In situ spectroscopy and theoretical calculations verify that this synergistic effect promotes the conversion of key intermediate *OOH to *O, thereby significantly facilitating the ORR o. This work provides a paradigm-shifting platform for designing high-performance multi-heteroatom-doped carbon electrocatalysts via synergistic defect engineering.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.