Da-Qian Cai,Hengyue Xu,Tong Xue,Jin-Lin Yang,Hong Jin Fan
{"title":"A Synchronous Strategy to Zn-Iodine Battery by Polycationic Long-Chain Molecules.","authors":"Da-Qian Cai,Hengyue Xu,Tong Xue,Jin-Lin Yang,Hong Jin Fan","doi":"10.1007/s40820-025-01854-6","DOIUrl":null,"url":null,"abstract":"Aqueous Zn-iodine batteries (ZIBs) face the formidable challenges towards practical implementation, including metal corrosion and rampant dendrite growth on the Zn anode side, and shuttle effect of polyiodide species from the cathode side. These challenges lead to poor cycle stability and severe self-discharge. From the fabrication and cost point of view, it is technologically more viable to deploy electrolyte engineering than electrode protection strategies. More importantly, a synchronous method for modulation of both cathode and anode is pivotal, which has been often neglected in prior studies. In this work, cationic poly(allylamine hydrochloride) (Pah+) is adopted as a low-cost dual-function electrolyte additive for ZIBs. We elaborate the synchronous effect by Pah+ in stabilizing Zn anode and immobilizing polyiodide anions. The fabricated Zn-iodine coin cell with Pah+ (ZnI2 loading: 25 mg cm-2) stably cycles 1000 times at 1 C, and a single-layered 3 × 4 cm2 pouch cell (N/P ratio ~ 1.5) with the same mass loading cycles over 300 times with insignificant capacity decay.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"29 4 1","pages":"3"},"PeriodicalIF":36.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01854-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous Zn-iodine batteries (ZIBs) face the formidable challenges towards practical implementation, including metal corrosion and rampant dendrite growth on the Zn anode side, and shuttle effect of polyiodide species from the cathode side. These challenges lead to poor cycle stability and severe self-discharge. From the fabrication and cost point of view, it is technologically more viable to deploy electrolyte engineering than electrode protection strategies. More importantly, a synchronous method for modulation of both cathode and anode is pivotal, which has been often neglected in prior studies. In this work, cationic poly(allylamine hydrochloride) (Pah+) is adopted as a low-cost dual-function electrolyte additive for ZIBs. We elaborate the synchronous effect by Pah+ in stabilizing Zn anode and immobilizing polyiodide anions. The fabricated Zn-iodine coin cell with Pah+ (ZnI2 loading: 25 mg cm-2) stably cycles 1000 times at 1 C, and a single-layered 3 × 4 cm2 pouch cell (N/P ratio ~ 1.5) with the same mass loading cycles over 300 times with insignificant capacity decay.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.