Aya Sato, Takuto Soma*, Hiroshi Kumigashira, Kohei Yoshimatsu and Akira Ohtomo,
{"title":"Strongly Correlated van der Waals Oxide: 2H-NbO2","authors":"Aya Sato, Takuto Soma*, Hiroshi Kumigashira, Kohei Yoshimatsu and Akira Ohtomo, ","doi":"10.1021/acsnano.5c05513","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) materials are attracting attention as an advanced class of materials. However, despite the strongly correlated electron systems exhibiting emergent properties, transition metal oxides are not recognized as 2D materials due to their infrequent van der Waals (vdW) crystal structures. Herein, we present a synthesis route for a vdW 2<i>H</i>-type transition metal dioxide, 2<i>H</i>-NbO<sub>2</sub>, via a soft-chemical approach from the only 2<i>H</i>-type layered oxide LiNbO<sub>2</sub>. By combining epitaxially stabilized thin films with a nanoscale thickness and solvothermal reaction, we successfully deintercalated Li, exceeding the bulk limit, while maintaining the single-crystal nature. We demonstrate that the synthesized 2<i>H</i>-NbO<sub>2</sub> is a correlated insulator with a half-filled single band, which endows exotic superconductivity to Li<sub>1–<i>x</i></sub>NbO<sub>2</sub>, whose quantum critical phase diagram has similarities to those of cuprates and Moiré superlattices. Our findings indicate that “strongly correlated vdW oxides” could be an approach for introducing Mott physics to 2D systems and a key that connects each research field.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 29","pages":"26592–26599"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c05513","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c05513","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials are attracting attention as an advanced class of materials. However, despite the strongly correlated electron systems exhibiting emergent properties, transition metal oxides are not recognized as 2D materials due to their infrequent van der Waals (vdW) crystal structures. Herein, we present a synthesis route for a vdW 2H-type transition metal dioxide, 2H-NbO2, via a soft-chemical approach from the only 2H-type layered oxide LiNbO2. By combining epitaxially stabilized thin films with a nanoscale thickness and solvothermal reaction, we successfully deintercalated Li, exceeding the bulk limit, while maintaining the single-crystal nature. We demonstrate that the synthesized 2H-NbO2 is a correlated insulator with a half-filled single band, which endows exotic superconductivity to Li1–xNbO2, whose quantum critical phase diagram has similarities to those of cuprates and Moiré superlattices. Our findings indicate that “strongly correlated vdW oxides” could be an approach for introducing Mott physics to 2D systems and a key that connects each research field.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.