Strongly Correlated van der Waals Oxide: 2H-NbO2

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-18 DOI:10.1021/acsnano.5c05513
Aya Sato, Takuto Soma*, Hiroshi Kumigashira, Kohei Yoshimatsu and Akira Ohtomo, 
{"title":"Strongly Correlated van der Waals Oxide: 2H-NbO2","authors":"Aya Sato,&nbsp;Takuto Soma*,&nbsp;Hiroshi Kumigashira,&nbsp;Kohei Yoshimatsu and Akira Ohtomo,&nbsp;","doi":"10.1021/acsnano.5c05513","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) materials are attracting attention as an advanced class of materials. However, despite the strongly correlated electron systems exhibiting emergent properties, transition metal oxides are not recognized as 2D materials due to their infrequent van der Waals (vdW) crystal structures. Herein, we present a synthesis route for a vdW 2<i>H</i>-type transition metal dioxide, 2<i>H</i>-NbO<sub>2</sub>, via a soft-chemical approach from the only 2<i>H</i>-type layered oxide LiNbO<sub>2</sub>. By combining epitaxially stabilized thin films with a nanoscale thickness and solvothermal reaction, we successfully deintercalated Li, exceeding the bulk limit, while maintaining the single-crystal nature. We demonstrate that the synthesized 2<i>H</i>-NbO<sub>2</sub> is a correlated insulator with a half-filled single band, which endows exotic superconductivity to Li<sub>1–<i>x</i></sub>NbO<sub>2</sub>, whose quantum critical phase diagram has similarities to those of cuprates and Moiré superlattices. Our findings indicate that “strongly correlated vdW oxides” could be an approach for introducing Mott physics to 2D systems and a key that connects each research field.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 29","pages":"26592–26599"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c05513","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c05513","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials are attracting attention as an advanced class of materials. However, despite the strongly correlated electron systems exhibiting emergent properties, transition metal oxides are not recognized as 2D materials due to their infrequent van der Waals (vdW) crystal structures. Herein, we present a synthesis route for a vdW 2H-type transition metal dioxide, 2H-NbO2, via a soft-chemical approach from the only 2H-type layered oxide LiNbO2. By combining epitaxially stabilized thin films with a nanoscale thickness and solvothermal reaction, we successfully deintercalated Li, exceeding the bulk limit, while maintaining the single-crystal nature. We demonstrate that the synthesized 2H-NbO2 is a correlated insulator with a half-filled single band, which endows exotic superconductivity to Li1–xNbO2, whose quantum critical phase diagram has similarities to those of cuprates and Moiré superlattices. Our findings indicate that “strongly correlated vdW oxides” could be an approach for introducing Mott physics to 2D systems and a key that connects each research field.

强相关范德瓦尔斯氧化物:2H-NbO2。
二维(2D)材料作为一类先进的材料正受到人们的关注。然而,尽管强相关电子系统表现出涌现特性,但过渡金属氧化物由于其罕见的范德华(vdW)晶体结构而不被认为是二维材料。在此,我们提出了一种以唯一的2h型层状氧化物LiNbO2为原料,通过软化学方法合成vdW 2h型过渡金属氧化物2H-NbO2的路线。通过结合具有纳米级厚度的外延稳定薄膜和溶剂热反应,我们成功地脱嵌了Li,超过了体积限制,同时保持了单晶性质。我们证明了合成的2H-NbO2是一个具有半填充单带的相关绝缘体,这使得Li1-xNbO2具有奇异的超导性,其量子临界相图与铜酸盐和莫尔奈尔超晶格相似。我们的研究结果表明,“强相关vdW氧化物”可能是将Mott物理学引入二维系统的一种方法,也是连接各个研究领域的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信