Cooperative Ligand Engineering Enabling Stepwise Optimization of Metal–Organic Frameworks for Improved C2H2 Separation from CO2 and CH4

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zitong Song, Kangli Zhang, Ke Zhao, Wen Jiang, Rajamani Krishna, Jiantang Li* and Dongmei Wang*, 
{"title":"Cooperative Ligand Engineering Enabling Stepwise Optimization of Metal–Organic Frameworks for Improved C2H2 Separation from CO2 and CH4","authors":"Zitong Song,&nbsp;Kangli Zhang,&nbsp;Ke Zhao,&nbsp;Wen Jiang,&nbsp;Rajamani Krishna,&nbsp;Jiantang Li* and Dongmei Wang*,&nbsp;","doi":"10.1021/acsami.5c09790","DOIUrl":null,"url":null,"abstract":"<p >Acetylene (C<sub>2</sub>H<sub>2</sub>), a critical chemical feedstock, is indispensable in numerous industrial processes. To satisfy the stringent demands for high-purity acetylene, adsorption-based separation techniques have become highly efficient strategies for purifying acetylene from mixtures containing methane and carbon dioxide. In this study, we introduce a novel cooperative ligand engineering strategy that integrates low-symmetry functionalized auxiliary ligands. This innovative approach enables the stepwise synthesis of three zinc-based metal–organic frameworks (MOFs), specifically <b>ZJNU-406</b>, <b>ZJNU-407</b>, and <b>ZJNU-408</b>, which exhibit distinct structural characteristics transitioning from 2D to 3D frameworks. The incorporation of functional groups and framework transformation optimizes the pore environments, thereby creating specific adsorption sites for target gases. Notably, <b>ZJNU-408</b> demonstrates superior separation performance, with a C<sub>2</sub>H<sub>2</sub> adsorption capacity of 44.8 cm<sup>3</sup> g<sup>–1</sup> at 298 K, and selectivities of 4.28 for C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> and 18.6 for C<sub>2</sub>H<sub>2</sub>/CH<sub>4</sub> at 298 K and 1.0 bar. Postsynthetic modification with copper ions further enhances its C<sub>2</sub>H<sub>2</sub> selectivity, achieving values of 6.8 for C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> and 20.7 for C<sub>2</sub>H<sub>2</sub>/CH<sub>4</sub>. These results outperform those of many previously reported MOF adsorbents, highlighting the substantial potential of these materials for industrial C<sub>2</sub>H<sub>2</sub> purification.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 30","pages":"43245–43254"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c09790","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acetylene (C2H2), a critical chemical feedstock, is indispensable in numerous industrial processes. To satisfy the stringent demands for high-purity acetylene, adsorption-based separation techniques have become highly efficient strategies for purifying acetylene from mixtures containing methane and carbon dioxide. In this study, we introduce a novel cooperative ligand engineering strategy that integrates low-symmetry functionalized auxiliary ligands. This innovative approach enables the stepwise synthesis of three zinc-based metal–organic frameworks (MOFs), specifically ZJNU-406, ZJNU-407, and ZJNU-408, which exhibit distinct structural characteristics transitioning from 2D to 3D frameworks. The incorporation of functional groups and framework transformation optimizes the pore environments, thereby creating specific adsorption sites for target gases. Notably, ZJNU-408 demonstrates superior separation performance, with a C2H2 adsorption capacity of 44.8 cm3 g–1 at 298 K, and selectivities of 4.28 for C2H2/CO2 and 18.6 for C2H2/CH4 at 298 K and 1.0 bar. Postsynthetic modification with copper ions further enhances its C2H2 selectivity, achieving values of 6.8 for C2H2/CO2 and 20.7 for C2H2/CH4. These results outperform those of many previously reported MOF adsorbents, highlighting the substantial potential of these materials for industrial C2H2 purification.

Abstract Image

协同配体工程实现逐步优化金属-有机框架以提高C2H2与CO2和CH4的分离。
乙炔(C2H2)是一种重要的化工原料,在许多工业过程中是不可缺少的。为了满足对高纯度乙炔的严格要求,基于吸附的分离技术已成为从含有甲烷和二氧化碳的混合物中纯化乙炔的高效策略。在这项研究中,我们引入了一种新的协同配体工程策略,该策略集成了低对称的功能化辅助配体。这种创新的方法能够逐步合成三种锌基金属有机框架(mof),特别是ZJNU-406, ZJNU-407和ZJNU-408,它们具有从2D到3D框架过渡的独特结构特征。官能团的加入和框架转化优化了孔隙环境,从而为目标气体创造了特定的吸附位点。ZJNU-408具有优异的分离性能,在298 K和1.0 bar条件下,对C2H2的吸附量为44.8 cm3 g-1,对C2H2/CO2的选择性为4.28,对C2H2/CH4的选择性为18.6。铜离子的合成修饰进一步提高了C2H2的选择性,C2H2/CO2的选择性为6.8,C2H2/CH4的选择性为20.7。这些结果优于许多先前报道的MOF吸附剂,突出了这些材料在工业C2H2净化方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信