{"title":"Immunostimulatory pH-responsive Nanogels Derived from Poly(oxanorbornene) Precursor Polymers","authors":"Johannes Kockelmann, Lutz Nuhn","doi":"10.1039/d5py00542f","DOIUrl":null,"url":null,"abstract":"Ring Opening Metathesis Polymerization (ROMP) provides access to well-defined poly(oxanorbornene) block copolymers that can be converted into micellar-derived immunoactive nanogels. We report on the synthesis of such immunoactive nanogels based on oxanorbornene-derived post-polymerization modification strategy. The key precursor, an oxanorbornene pentafluorophenyl ester (ONB-PFP) monomer, was synthesized and polymerized using living ring-opening metathesis polymerization (ROMP) facilitated by a third-generation Grubbs catalyst (G3) for efficient living-type block copolymerization. This approach yielded well-defined block copolymers by incorporating an active ester monomer with a hydrophilic triethylene glycol-functionalized oxanorbornene, establishing a robust platform for subsequent post-polymerization modifications. Nanogels were formed by aqueous self-assembly of the block copolymers, with various crosslinking agents employed to generate both acid-labile (D-NG) and non-degradable (ND-NG) nanogels, while without crosslinkers fully hydrophilic single polymer chains were obtained as controls. The covalent attachment of the Toll-like receptor 7/8 agonist IMDQ, an immunomodulatory imidazoquinoline agent, to the nanogels produced immunoactive nanogels, whose immunostimulatory efficacy was evaluated in vitro using a RAW-Blue macrophage reporter cell line. Flow cytometry confirmed efficient cellular uptake of only the intact nanogels by the macrophages resulting in a receptor activation and thus providing a strategy to safely control the delivery of the highly potent TLR7/8 agonist.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"95 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5py00542f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ring Opening Metathesis Polymerization (ROMP) provides access to well-defined poly(oxanorbornene) block copolymers that can be converted into micellar-derived immunoactive nanogels. We report on the synthesis of such immunoactive nanogels based on oxanorbornene-derived post-polymerization modification strategy. The key precursor, an oxanorbornene pentafluorophenyl ester (ONB-PFP) monomer, was synthesized and polymerized using living ring-opening metathesis polymerization (ROMP) facilitated by a third-generation Grubbs catalyst (G3) for efficient living-type block copolymerization. This approach yielded well-defined block copolymers by incorporating an active ester monomer with a hydrophilic triethylene glycol-functionalized oxanorbornene, establishing a robust platform for subsequent post-polymerization modifications. Nanogels were formed by aqueous self-assembly of the block copolymers, with various crosslinking agents employed to generate both acid-labile (D-NG) and non-degradable (ND-NG) nanogels, while without crosslinkers fully hydrophilic single polymer chains were obtained as controls. The covalent attachment of the Toll-like receptor 7/8 agonist IMDQ, an immunomodulatory imidazoquinoline agent, to the nanogels produced immunoactive nanogels, whose immunostimulatory efficacy was evaluated in vitro using a RAW-Blue macrophage reporter cell line. Flow cytometry confirmed efficient cellular uptake of only the intact nanogels by the macrophages resulting in a receptor activation and thus providing a strategy to safely control the delivery of the highly potent TLR7/8 agonist.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.