Quantum Mechanics-Driven Structure-Activity Relationship Study of PEX5-PEX14 Protein-Protein Interaction Inhibitors Based On a Dibenzo[b,e]azepin-6(6H)-one Scaffold
Michał Nowacki, Filipe Menezes, Emilia Pykacz, Mateusz Popiołek, Valeria Napolitano, Chethan K. Krishna, Vishal C. Kalel, Ralf Erdmann, Tony Fröhlich, Oliver Plettenburg, Michael Sattler, Grzegorz M. Popowicz, Maciej Dawidowski
{"title":"Quantum Mechanics-Driven Structure-Activity Relationship Study of PEX5-PEX14 Protein-Protein Interaction Inhibitors Based On a Dibenzo[b,e]azepin-6(6H)-one Scaffold","authors":"Michał Nowacki, Filipe Menezes, Emilia Pykacz, Mateusz Popiołek, Valeria Napolitano, Chethan K. Krishna, Vishal C. Kalel, Ralf Erdmann, Tony Fröhlich, Oliver Plettenburg, Michael Sattler, Grzegorz M. Popowicz, Maciej Dawidowski","doi":"10.1016/j.ejmech.2025.117979","DOIUrl":null,"url":null,"abstract":"Targeting protein-protein interactions (PPIs) is a promising strategy in drug development. However, despite the considerable progress in the field, targeting PPIs with small molecules remains challenging, requiring novel strategies in inhibitor design and subsequent structure-activity relationship (SAR) studies. We have recently identified the PEX5-PEX14 PPI as a novel therapeutic target against diseases related to <em>Trypanosoma</em> infections and discovered small-molecule inhibitors against PEX14 using structure-based drug discovery (SBDD). The current study demonstrates that combining SBDD with quantum mechanical (QM) energy decomposition and deconvolution analysis (EDDA) provides an in-depth understanding of SAR in the newly developed PPI inhibitors class. We obtained diverse dibenzo[<em>b</em>,<em>e</em>]azepin-6(6<em>H</em>)-one PEX14 inhibitors, which resulted from redesigning the central scaffold of one of the previous compound lines and follow-up modifications. The diversification strategy yielded compounds obtained by multicomponent reactions (MCRs), from which the Kabachnik-Fields reaction products were the most potent tricyclic PEX5-PEX14 PPI inhibitors obtained so far. Overall, the activities of the compounds measured with biophysical assays aligned with the QM-derived compound binding energies. Hence, using an advanced computational approach, our results pave an alternative way for SAR rationalization of compounds against PPI targets.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"662 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117979","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting protein-protein interactions (PPIs) is a promising strategy in drug development. However, despite the considerable progress in the field, targeting PPIs with small molecules remains challenging, requiring novel strategies in inhibitor design and subsequent structure-activity relationship (SAR) studies. We have recently identified the PEX5-PEX14 PPI as a novel therapeutic target against diseases related to Trypanosoma infections and discovered small-molecule inhibitors against PEX14 using structure-based drug discovery (SBDD). The current study demonstrates that combining SBDD with quantum mechanical (QM) energy decomposition and deconvolution analysis (EDDA) provides an in-depth understanding of SAR in the newly developed PPI inhibitors class. We obtained diverse dibenzo[b,e]azepin-6(6H)-one PEX14 inhibitors, which resulted from redesigning the central scaffold of one of the previous compound lines and follow-up modifications. The diversification strategy yielded compounds obtained by multicomponent reactions (MCRs), from which the Kabachnik-Fields reaction products were the most potent tricyclic PEX5-PEX14 PPI inhibitors obtained so far. Overall, the activities of the compounds measured with biophysical assays aligned with the QM-derived compound binding energies. Hence, using an advanced computational approach, our results pave an alternative way for SAR rationalization of compounds against PPI targets.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.