Ningqiang Gong, Dongyoon Kim, Mohamad-Gabriel Alameh, Rakan El-Mayta, Emily L. Han, Garima Dwivedi, Rohan Palanki, Qiangqiang Shi, Xuexiang Han, Lulu Xue, Junchao Xu, Zilin Meng, Tianyu Luo, Christian G. Figueroa-Espada, Drew Weissman, Jinghong Li, Michael J. Mitchell
{"title":"Mannich reaction-based combinatorial libraries identify antioxidant ionizable lipids for mRNA delivery with reduced immunogenicity","authors":"Ningqiang Gong, Dongyoon Kim, Mohamad-Gabriel Alameh, Rakan El-Mayta, Emily L. Han, Garima Dwivedi, Rohan Palanki, Qiangqiang Shi, Xuexiang Han, Lulu Xue, Junchao Xu, Zilin Meng, Tianyu Luo, Christian G. Figueroa-Espada, Drew Weissman, Jinghong Li, Michael J. Mitchell","doi":"10.1038/s41551-025-01422-8","DOIUrl":null,"url":null,"abstract":"<p>The immunogenicity of lipid nanoparticles (LNPs) used for the delivery of nucleoside-modified messenger RNA limits the levels and durability of expression of the encoded protein. Here, by leveraging the Mannich reaction for ionizable lipid synthesis, and via the in vitro and in vivo screening of six combinatorial libraries of synthesized lipids, we report the identification of an antioxidant ionizable lipid, C-a16, exhibiting reduced immunogenicity. When incorporated into LNPs for mRNA delivery, C-a16 mitigated the generation of intracellular reactive oxygen species, thereby extending the duration of protein expression. In mice, and compared with commercial LNPs, LNPs incorporating C-a16 and co-delivering Cas9 mRNA and guide RNA for the editing of the transthyretin gene led to 2.8-fold higher editing efficiency; LNPs with C-a16 delivering fibroblast growth factor 21 mRNA increased the expression of the protein 3.6-fold; and when delivering mRNA encoding a tumour neoantigen or the spike protein of SARS-CoV-2, LNPs with C-a16 induced stronger antigen-specific immune responses. Our findings support the further testing of C-a16 as a promising ionizable lipid for mRNA delivery in therapeutic applications.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"24 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01422-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The immunogenicity of lipid nanoparticles (LNPs) used for the delivery of nucleoside-modified messenger RNA limits the levels and durability of expression of the encoded protein. Here, by leveraging the Mannich reaction for ionizable lipid synthesis, and via the in vitro and in vivo screening of six combinatorial libraries of synthesized lipids, we report the identification of an antioxidant ionizable lipid, C-a16, exhibiting reduced immunogenicity. When incorporated into LNPs for mRNA delivery, C-a16 mitigated the generation of intracellular reactive oxygen species, thereby extending the duration of protein expression. In mice, and compared with commercial LNPs, LNPs incorporating C-a16 and co-delivering Cas9 mRNA and guide RNA for the editing of the transthyretin gene led to 2.8-fold higher editing efficiency; LNPs with C-a16 delivering fibroblast growth factor 21 mRNA increased the expression of the protein 3.6-fold; and when delivering mRNA encoding a tumour neoantigen or the spike protein of SARS-CoV-2, LNPs with C-a16 induced stronger antigen-specific immune responses. Our findings support the further testing of C-a16 as a promising ionizable lipid for mRNA delivery in therapeutic applications.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.