Adel Afia , Fawzi Gougam , Abdenour Soualhi , Mohammed Wadi , Mohamed Tahi , Mohammed Amine Sahraoui
{"title":"A data driven fault diagnosis approach for robotic cutting tools in smart manufacturing","authors":"Adel Afia , Fawzi Gougam , Abdenour Soualhi , Mohammed Wadi , Mohamed Tahi , Mohammed Amine Sahraoui","doi":"10.1016/j.isatra.2025.07.021","DOIUrl":null,"url":null,"abstract":"<div><div>In smart manufacturing within Industry 4.0, tool condition monitoring (TCM) is used to improve productivity and machine availability by leveraging advanced sensors and computational intelligence to prevent tool damage. This paper develops a hybrid methodology using heterogeneous sensor measurements for monitoring robotic cutting tools with four tool states: healthy, surface damage, flake damage and broken tooth. The proposed approach integrates the maximal overlap discrete wavelet packet transform (MODWPT) with health indicators to construct feature matrices for each tool state. Feature selection is performed using the tree growth algorithm (TGA) to reduce computation time and improve feature space separation by selecting only relevant features. The selected features are input into a Gaussian mixture model (GMM) to detect, identify and classify each tool state with high accuracy. The proposed method provides a classification accuracy of 99.04 % for vibration, 95.51 % for torque, and 91.67 % for force signals. Using unseen vibration data, the model achieved a test accuracy of 98.44 %, demonstrating a high degree of generalizability. Comparative analysis demonstrates that our proposed approach provides superior feature discrimination and model stability, balancing computational efficiency and classification accuracy, validating the TGA-GMM framework as an effective solution for tool fault diagnosis in noisy, high-dimensional data.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"166 ","pages":"Pages 280-297"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825003702","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In smart manufacturing within Industry 4.0, tool condition monitoring (TCM) is used to improve productivity and machine availability by leveraging advanced sensors and computational intelligence to prevent tool damage. This paper develops a hybrid methodology using heterogeneous sensor measurements for monitoring robotic cutting tools with four tool states: healthy, surface damage, flake damage and broken tooth. The proposed approach integrates the maximal overlap discrete wavelet packet transform (MODWPT) with health indicators to construct feature matrices for each tool state. Feature selection is performed using the tree growth algorithm (TGA) to reduce computation time and improve feature space separation by selecting only relevant features. The selected features are input into a Gaussian mixture model (GMM) to detect, identify and classify each tool state with high accuracy. The proposed method provides a classification accuracy of 99.04 % for vibration, 95.51 % for torque, and 91.67 % for force signals. Using unseen vibration data, the model achieved a test accuracy of 98.44 %, demonstrating a high degree of generalizability. Comparative analysis demonstrates that our proposed approach provides superior feature discrimination and model stability, balancing computational efficiency and classification accuracy, validating the TGA-GMM framework as an effective solution for tool fault diagnosis in noisy, high-dimensional data.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.