{"title":"Exposure scenarios for human health risk assessment of nano- and microplastic particles.","authors":"Taylor Lane, Ira Wardani, Albert A Koelmans","doi":"10.1186/s43591-025-00134-9","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence of nano- and microplastic particles being present in the human body has increased in recent years, yet there is no acceptable methodology to perform a human health risk assessment for these particles because of limitations in the exposure and hazard assessments. Exposure assessment can be improved by establishing comprehensive and justifiable exposure scenarios for a defined exposure demographic, thoroughly describing the relevant exposure pathways, and performing multidimensional data alignment, thereby facilitating probabilistic estimates of nano- and microplastic particle exposure. General considerations of exposure scenarios are outlined, along with specifics details on the complexity and prioritization for nine demographic groups: adults; women; the elderly; individuals with disease; individuals employed in high-hazard occupations; and children demographics, including early infants, toddlers, school children, and teenagers. Recommendations to advance exposure assessments and scenarios are also provided which suggest: i) the use of well-defined exposure scenarios for demographics that are prioritized according to their level of complexity and concern; ii) a thorough description of relevant activity factors (physiological parameters, behavioural traits) and exposure factors (duration, frequency, media characterization) for the chosen demographic; iii) thorough descriptions of exposure via ingestion and inhalation, and in the case of early infants, including exposure via maternal transfer; iv) multidimensional data alignment and probabilistic methods to enable credible comparisons of exposure data across studies and inform physiologically based toxicokinetic models to estimate internal exposure.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s43591-025-00134-9.</p>","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"5 1","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microplastics and nanoplastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43591-025-00134-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence of nano- and microplastic particles being present in the human body has increased in recent years, yet there is no acceptable methodology to perform a human health risk assessment for these particles because of limitations in the exposure and hazard assessments. Exposure assessment can be improved by establishing comprehensive and justifiable exposure scenarios for a defined exposure demographic, thoroughly describing the relevant exposure pathways, and performing multidimensional data alignment, thereby facilitating probabilistic estimates of nano- and microplastic particle exposure. General considerations of exposure scenarios are outlined, along with specifics details on the complexity and prioritization for nine demographic groups: adults; women; the elderly; individuals with disease; individuals employed in high-hazard occupations; and children demographics, including early infants, toddlers, school children, and teenagers. Recommendations to advance exposure assessments and scenarios are also provided which suggest: i) the use of well-defined exposure scenarios for demographics that are prioritized according to their level of complexity and concern; ii) a thorough description of relevant activity factors (physiological parameters, behavioural traits) and exposure factors (duration, frequency, media characterization) for the chosen demographic; iii) thorough descriptions of exposure via ingestion and inhalation, and in the case of early infants, including exposure via maternal transfer; iv) multidimensional data alignment and probabilistic methods to enable credible comparisons of exposure data across studies and inform physiologically based toxicokinetic models to estimate internal exposure.
Supplementary information: The online version contains supplementary material available at 10.1186/s43591-025-00134-9.