Exploring genetic adaptation and microbial dynamics in engineered anaerobic ecosystems via strain-level metagenomics.

IF 11.1 Q1 CELL BIOLOGY
Gabriele Ghiotto, Aikaterini Xirostylidou, Maria Gaspari, Panagiotis G Kougias, Stefano Campanaro, Laura Treu
{"title":"Exploring genetic adaptation and microbial dynamics in engineered anaerobic ecosystems via strain-level metagenomics.","authors":"Gabriele Ghiotto, Aikaterini Xirostylidou, Maria Gaspari, Panagiotis G Kougias, Stefano Campanaro, Laura Treu","doi":"10.1016/j.xgen.2025.100949","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic heterogeneity exists within all microbial populations, with sympatric cells of the same species often exhibiting single-nucleotide variations that influence phenotypic traits, including metabolic efficiency. However, the evolutionary dynamics of these strain-level differences in response to environmental stress remain poorly understood. Here, we present a first-of-its-kind study tracking the adaptive evolution of an anaerobic, carbon-fixing microbiota under a controlled engineered ecosystem focused on carbon dioxide bioconversion into methane. Leveraging strain-resolved metagenomics with an ad hoc variant calling and phasing approach, we mapped mutation trajectories and observed that the two dominant Methanothermobacter species maintained distinct sweeping haplotypes over time, most likely due to niche-specific metabolic roles. By combining population genetic statistics and peptide reconstruction, mer and mcrB genes emerged as potential drivers of archaeal strain-level competition. These findings pave the way for targeted engineering of microbial communities to enhance bioconversion efficiency, with significant implications for sustainable energy and carbon management in anaerobic systems.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100949"},"PeriodicalIF":11.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic heterogeneity exists within all microbial populations, with sympatric cells of the same species often exhibiting single-nucleotide variations that influence phenotypic traits, including metabolic efficiency. However, the evolutionary dynamics of these strain-level differences in response to environmental stress remain poorly understood. Here, we present a first-of-its-kind study tracking the adaptive evolution of an anaerobic, carbon-fixing microbiota under a controlled engineered ecosystem focused on carbon dioxide bioconversion into methane. Leveraging strain-resolved metagenomics with an ad hoc variant calling and phasing approach, we mapped mutation trajectories and observed that the two dominant Methanothermobacter species maintained distinct sweeping haplotypes over time, most likely due to niche-specific metabolic roles. By combining population genetic statistics and peptide reconstruction, mer and mcrB genes emerged as potential drivers of archaeal strain-level competition. These findings pave the way for targeted engineering of microbial communities to enhance bioconversion efficiency, with significant implications for sustainable energy and carbon management in anaerobic systems.

通过菌株水平宏基因组学探索工程厌氧生态系统的遗传适应和微生物动力学。
遗传异质性存在于所有微生物种群中,同一物种的同域细胞通常表现出单核苷酸变异,影响表型性状,包括代谢效率。然而,这些应变水平差异对环境应激反应的进化动力学仍然知之甚少。在这里,我们提出了一项史无前例的研究,跟踪厌氧、固定碳的微生物群在一个受控的工程生态系统下的适应性进化,重点是二氧化碳生物转化为甲烷。利用菌株解析宏基因组学和一种特殊的变异调用和相位方法,我们绘制了突变轨迹,并观察到两种优势的甲烷热细菌物种随着时间的推移保持着不同的广泛单倍型,这很可能是由于利基特异性代谢作用。结合群体遗传统计和多肽重建,发现mer和mcrB基因是古细菌菌株水平竞争的潜在驱动因素。这些发现为微生物群落的定向工程铺平了道路,以提高生物转化效率,对厌氧系统的可持续能源和碳管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信