Chunmiao Zhang, Hailin Zhu, Hu Long, Yuchao Shi, Jixiang Guo, Meng You
{"title":"Deep learning-assisted comparison of different models for predicting maxillary canine impaction on panoramic radiography.","authors":"Chunmiao Zhang, Hailin Zhu, Hu Long, Yuchao Shi, Jixiang Guo, Meng You","doi":"10.1016/j.ajodo.2025.05.008","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The panoramic radiograph is the most commonly used imaging modality for predicting maxillary canine impaction. Several prediction models have been constructed based on panoramic radiographs. This study aimed to compare the prediction accuracy of existing models in an external validation facilitated by an automatic landmark detection system based on deep learning.</p><p><strong>Methods: </strong>Patients aged 7-14 years who underwent panoramic radiographic examinations and received a diagnosis of impacted canines were included in the study. An automatic landmark localization system was employed to assist the measurement of geometric parameters on the panoramic radiographs, followed by the calculated prediction of the canine impaction. Three prediction models constructed by Arnautska, Alqerban et al, and Margot et al were evaluated. The metrics of accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristic curve (AUC) were used to compare the performance of different models.</p><p><strong>Results: </strong>A total of 102 panoramic radiographs with 102 impacted canines and 102 nonimpacted canines were analyzed in this study. The prediction outcomes indicated that the model by Margot et al achieved the highest performance, with a sensitivity of 95% and a specificity of 86% (AUC, 0.97), followed by the model by Arnautska, with a sensitivity of 93% and a specificity of 71% (AUC, 0.94). The model by Alqerban et al showed poor performance with an AUC of only 0.20.</p><p><strong>Conclusions: </strong>Two of the existing predictive models exhibited good diagnostic accuracy, whereas the third model demonstrated suboptimal performance. Nonetheless, even the most effective model is constrained by several limitations, such as logical and computational challenges, which necessitate further refinement.</p>","PeriodicalId":50806,"journal":{"name":"American Journal of Orthodontics and Dentofacial Orthopedics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Orthodontics and Dentofacial Orthopedics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajodo.2025.05.008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The panoramic radiograph is the most commonly used imaging modality for predicting maxillary canine impaction. Several prediction models have been constructed based on panoramic radiographs. This study aimed to compare the prediction accuracy of existing models in an external validation facilitated by an automatic landmark detection system based on deep learning.
Methods: Patients aged 7-14 years who underwent panoramic radiographic examinations and received a diagnosis of impacted canines were included in the study. An automatic landmark localization system was employed to assist the measurement of geometric parameters on the panoramic radiographs, followed by the calculated prediction of the canine impaction. Three prediction models constructed by Arnautska, Alqerban et al, and Margot et al were evaluated. The metrics of accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristic curve (AUC) were used to compare the performance of different models.
Results: A total of 102 panoramic radiographs with 102 impacted canines and 102 nonimpacted canines were analyzed in this study. The prediction outcomes indicated that the model by Margot et al achieved the highest performance, with a sensitivity of 95% and a specificity of 86% (AUC, 0.97), followed by the model by Arnautska, with a sensitivity of 93% and a specificity of 71% (AUC, 0.94). The model by Alqerban et al showed poor performance with an AUC of only 0.20.
Conclusions: Two of the existing predictive models exhibited good diagnostic accuracy, whereas the third model demonstrated suboptimal performance. Nonetheless, even the most effective model is constrained by several limitations, such as logical and computational challenges, which necessitate further refinement.
期刊介绍:
Published for more than 100 years, the American Journal of Orthodontics and Dentofacial Orthopedics remains the leading orthodontic resource. It is the official publication of the American Association of Orthodontists, its constituent societies, the American Board of Orthodontics, and the College of Diplomates of the American Board of Orthodontics. Each month its readers have access to original peer-reviewed articles that examine all phases of orthodontic treatment. Illustrated throughout, the publication includes tables, color photographs, and statistical data. Coverage includes successful diagnostic procedures, imaging techniques, bracket and archwire materials, extraction and impaction concerns, orthognathic surgery, TMJ disorders, removable appliances, and adult therapy.