Gabriele Zaffagnini, Miquel Solé, Juan Manuel Duran, Nikolaos P Polyzos, Elvan Böke
{"title":"The proteostatic landscape of healthy human oocytes.","authors":"Gabriele Zaffagnini, Miquel Solé, Juan Manuel Duran, Nikolaos P Polyzos, Elvan Böke","doi":"10.1038/s44318-025-00493-2","DOIUrl":null,"url":null,"abstract":"<p><p>Oocytes, female germ cells that develop into eggs, are among the longest-lived cells in the animal body. Recent studies on mouse oocytes highlight unique adaptations in protein homeostasis (proteostasis) within these cells. However, the mechanisms of proteostasis in human oocytes remain virtually unstudied. We present the first large-scale study of proteostatic activity in human oocytes using over 100 freshly donated oocytes from 21 healthy women aged 19-34 years. We analysed the activity and distribution of lysosomes, proteasomes, and mitochondria in both immature and mature oocytes. Notably, human oocytes exhibit nearly twofold lower proteolytic activity than surrounding somatic cells, with further decreases as oocytes mature. Oocyte maturation is also coupled with lysosomal exocytosis and a decrease in mitochondrial membrane potential. We propose that reduced organelle activity preserves key cellular components critical for early embryonic development during the prolonged maturation of human oocytes. Our findings highlight the distinctive biology of human oocytes and the need to investigate human-specific reproductive biology to address challenges in female fertility.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4611-4630"},"PeriodicalIF":8.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00493-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oocytes, female germ cells that develop into eggs, are among the longest-lived cells in the animal body. Recent studies on mouse oocytes highlight unique adaptations in protein homeostasis (proteostasis) within these cells. However, the mechanisms of proteostasis in human oocytes remain virtually unstudied. We present the first large-scale study of proteostatic activity in human oocytes using over 100 freshly donated oocytes from 21 healthy women aged 19-34 years. We analysed the activity and distribution of lysosomes, proteasomes, and mitochondria in both immature and mature oocytes. Notably, human oocytes exhibit nearly twofold lower proteolytic activity than surrounding somatic cells, with further decreases as oocytes mature. Oocyte maturation is also coupled with lysosomal exocytosis and a decrease in mitochondrial membrane potential. We propose that reduced organelle activity preserves key cellular components critical for early embryonic development during the prolonged maturation of human oocytes. Our findings highlight the distinctive biology of human oocytes and the need to investigate human-specific reproductive biology to address challenges in female fertility.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.