Miles Minio, Mariano Battistuzzi, Alessandra Norici, Nicoletta La Rocca, Cristina Pagliano, Caterina Gerotto
{"title":"Effects of Sulfate Limitation on Photosynthesis and Cell Composition of Unicellular Marine Microalgae of Different Phylogenies.","authors":"Miles Minio, Mariano Battistuzzi, Alessandra Norici, Nicoletta La Rocca, Cristina Pagliano, Caterina Gerotto","doi":"10.1111/ppl.70401","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfur (S) is an essential macroelement for photosynthetic organisms and is acquired as sulfate and assimilated as sulfide into cysteine through a highly demanding reductive process. S is a key component of proteins, lipids, and various other cellular metabolites and plays a direct role in photosynthesis, both in the electron transport and in carbon fixation reactions. Despite such central functions, most of our knowledge on S metabolism is focused on plant species, while in microalgae it is still fragmented, particularly concerning their huge phylogenetic diversity. Here, we investigated responses to continuous low sulfate availability in three marine microalgae, two Chlorophytes, Tetraselmis suecica and Dunaliella salina, and the diatom Phaeodactylum tricornutum, by characterizing their growth, photosynthesis, elemental, and macromolecular composition. As a general trend, all the microalgae acclimated to the low sulfate medium prioritized the allocation of available resources to photosynthesis. By modulating their pigment content per cell and the stoichiometry of their photosynthetic apparatus, S-limited cells kept in vivo photosynthetic activity close to that of control cultures. Conversely, growth and cell composition were modulated in a species-specific manner. Results are discussed also in an evolutionary perspective, taking into consideration that, throughout Earth's history, sulfate concentration significantly increased from ancient to modern oceans, and such variation was paralleled by changes in the ecological abundances between algal groups, with the red algae lineage of present-day oceans supplanting the green algae, more abundant in the past.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 4","pages":"e70401"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur (S) is an essential macroelement for photosynthetic organisms and is acquired as sulfate and assimilated as sulfide into cysteine through a highly demanding reductive process. S is a key component of proteins, lipids, and various other cellular metabolites and plays a direct role in photosynthesis, both in the electron transport and in carbon fixation reactions. Despite such central functions, most of our knowledge on S metabolism is focused on plant species, while in microalgae it is still fragmented, particularly concerning their huge phylogenetic diversity. Here, we investigated responses to continuous low sulfate availability in three marine microalgae, two Chlorophytes, Tetraselmis suecica and Dunaliella salina, and the diatom Phaeodactylum tricornutum, by characterizing their growth, photosynthesis, elemental, and macromolecular composition. As a general trend, all the microalgae acclimated to the low sulfate medium prioritized the allocation of available resources to photosynthesis. By modulating their pigment content per cell and the stoichiometry of their photosynthetic apparatus, S-limited cells kept in vivo photosynthetic activity close to that of control cultures. Conversely, growth and cell composition were modulated in a species-specific manner. Results are discussed also in an evolutionary perspective, taking into consideration that, throughout Earth's history, sulfate concentration significantly increased from ancient to modern oceans, and such variation was paralleled by changes in the ecological abundances between algal groups, with the red algae lineage of present-day oceans supplanting the green algae, more abundant in the past.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.