Marco Mehl, Matteo Pelucchi, Luna Pratali Maffei, Alessandro Stagni, Alberto Cuoci, Alessio Frassoldati, Eliseo Ranzi, Tiziano Faravelli
{"title":"Developing chemical kinetic models for thermochemical applications.","authors":"Marco Mehl, Matteo Pelucchi, Luna Pratali Maffei, Alessandro Stagni, Alberto Cuoci, Alessio Frassoldati, Eliseo Ranzi, Tiziano Faravelli","doi":"10.1038/s41596-025-01195-z","DOIUrl":null,"url":null,"abstract":"<p><p>A general procedure for the development of chemical kinetic models relevant to thermochemical applications (pyrolysis, gasification and combustion) is described. Here we present techniques that aim at producing models that are modular in structure, thoroughly validated, and applicable to a wide variety of conditions (generality), while balancing accuracy and computational burden. Starting from a core mechanism describing the pyrolysis and oxidation of light species, heavier compounds are added to the model in a hierarchical fashion, starting from archetypal species of each class of compounds. Using analogy rules derived from the archetypal species, a list of reactions and reaction rate parameters are compiled for molecules belonging to the classes of interest, obtaining detailed or semidetailed reaction mechanisms. The model is then validated using data available from the literature and/or novel experiments performed ad hoc. Depending on the applications of interest and on the size of the model, a mechanism reduction can be performed using a combination of lumping techniques and flux or sensitivity analyses. These procedures, although partially automated, still require some level of expert knowledge. The development of reaction rate rules and the identification of reaction pathways require indeed critical analysis and are most effective when the operator has previous experience in the field. A rigorously built mechanism, obeying the general principles presented here, provides high predictivity and permits extrapolating fuel behavior with greater confidence outside the range of validation conditions compared with models assembled from nonconsistently sourced submechanism from the literature, or based on limited datasets and empirical information.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01195-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A general procedure for the development of chemical kinetic models relevant to thermochemical applications (pyrolysis, gasification and combustion) is described. Here we present techniques that aim at producing models that are modular in structure, thoroughly validated, and applicable to a wide variety of conditions (generality), while balancing accuracy and computational burden. Starting from a core mechanism describing the pyrolysis and oxidation of light species, heavier compounds are added to the model in a hierarchical fashion, starting from archetypal species of each class of compounds. Using analogy rules derived from the archetypal species, a list of reactions and reaction rate parameters are compiled for molecules belonging to the classes of interest, obtaining detailed or semidetailed reaction mechanisms. The model is then validated using data available from the literature and/or novel experiments performed ad hoc. Depending on the applications of interest and on the size of the model, a mechanism reduction can be performed using a combination of lumping techniques and flux or sensitivity analyses. These procedures, although partially automated, still require some level of expert knowledge. The development of reaction rate rules and the identification of reaction pathways require indeed critical analysis and are most effective when the operator has previous experience in the field. A rigorously built mechanism, obeying the general principles presented here, provides high predictivity and permits extrapolating fuel behavior with greater confidence outside the range of validation conditions compared with models assembled from nonconsistently sourced submechanism from the literature, or based on limited datasets and empirical information.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.