Diverse Metabolic Control of Phosphoglucomutases by Bisphosphorylated Sugars in Heterotrophic Bacteria.

IF 0.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Janette T Alford, Marina Borisova-Mayer, Christoph Mayer, Karl Forchhammer
{"title":"Diverse Metabolic Control of Phosphoglucomutases by Bisphosphorylated Sugars in Heterotrophic Bacteria.","authors":"Janette T Alford, Marina Borisova-Mayer, Christoph Mayer, Karl Forchhammer","doi":"10.1159/000547435","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Phosphoglucomutases (PGM) are crucial for bacterial fitness, environmental survival, pathogenicity, and cell envelope stability, making them potential new targets for combating bacterial infection and transmission. PGM functionality relies on initial phosphorylation by the activator glucose-1,6-bisphosphate (glucose-1,6-BP). While the origin of glucose-1,6-BP in vertebrates is well investigated, a bacterial glucose-1,6-BP synthase was only recently identified in the cyanobacterium Synechocystis. In this photoautotroph, a secondary PGM (SynPGM2) efficiently catalyzes glucose-1,6-BP synthesis from fructose-1,6-bisphosphate (fructose-1,6-BP) and glucose-1-phosphate or glucose-6-phosphate . A homologous PGM from the heterotrophic Bacteroides salyersiae, belonging to the same conserved domain subfamily (cd05800) as SynPGM2, exhibited similar activity, suggesting that bacterial glucose-1,6-BP synthesis is a feature of this specific subfamily.</p><p><strong>Methods: </strong>To investigate the specificity and regulation of various PGM enzymes from different heterotrophic bacteria, recombinant enzymes were purified and analyzed using enzymatic assays and HPLC-MS.</p><p><strong>Results: </strong>We demonstrate that glucose-1,6-BP synthesis extends beyond the cd5800 subfamily to the cd05801, cd05799, and cd03089 subfamilies. PGMs from Escherichia coli (cd05801 and cd03089), Enterococcus faecium (cd05799), Yersinia enterocolitica (cd05801), and Candidatus Gastranaerophilales (cd05800) catalyze the same fructose-1,6-BP-dependent synthesis reaction of glucose-1,6-BP as SynPGM2. Notably, fructose-1,6-BP, a known inhibitor of some PGM, does not inhibit these bacterial PGMs. Moreover, E. faecium PGM, belonging to the same subfamily as the mammalian glucose 1,6 BP synthase, efficiently catalyzes the mammalian-type 1,3-bisphosphoglycerate-dependent glucose 1,6-BP synthesis reaction.</p><p><strong>Conclusion: </strong>All investigated heterotrophic bacteria appear to use their primary PGM for both PGM activity and activator synthesis, suggesting a more versatile and less specialized role for PGMs in heterotrophic bacteria.</p>","PeriodicalId":18457,"journal":{"name":"Microbial Physiology","volume":" ","pages":"1-19"},"PeriodicalIF":0.1000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000547435","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Phosphoglucomutases (PGM) are crucial for bacterial fitness, environmental survival, pathogenicity, and cell envelope stability, making them potential new targets for combating bacterial infection and transmission. PGM functionality relies on initial phosphorylation by the activator glucose-1,6-bisphosphate (glucose-1,6-BP). While the origin of glucose-1,6-BP in vertebrates is well investigated, a bacterial glucose-1,6-BP synthase was only recently identified in the cyanobacterium Synechocystis. In this photoautotroph, a secondary PGM (SynPGM2) efficiently catalyzes glucose-1,6-BP synthesis from fructose-1,6-bisphosphate (fructose-1,6-BP) and glucose-1-phosphate or glucose-6-phosphate . A homologous PGM from the heterotrophic Bacteroides salyersiae, belonging to the same conserved domain subfamily (cd05800) as SynPGM2, exhibited similar activity, suggesting that bacterial glucose-1,6-BP synthesis is a feature of this specific subfamily.

Methods: To investigate the specificity and regulation of various PGM enzymes from different heterotrophic bacteria, recombinant enzymes were purified and analyzed using enzymatic assays and HPLC-MS.

Results: We demonstrate that glucose-1,6-BP synthesis extends beyond the cd5800 subfamily to the cd05801, cd05799, and cd03089 subfamilies. PGMs from Escherichia coli (cd05801 and cd03089), Enterococcus faecium (cd05799), Yersinia enterocolitica (cd05801), and Candidatus Gastranaerophilales (cd05800) catalyze the same fructose-1,6-BP-dependent synthesis reaction of glucose-1,6-BP as SynPGM2. Notably, fructose-1,6-BP, a known inhibitor of some PGM, does not inhibit these bacterial PGMs. Moreover, E. faecium PGM, belonging to the same subfamily as the mammalian glucose 1,6 BP synthase, efficiently catalyzes the mammalian-type 1,3-bisphosphoglycerate-dependent glucose 1,6-BP synthesis reaction.

Conclusion: All investigated heterotrophic bacteria appear to use their primary PGM for both PGM activity and activator synthesis, suggesting a more versatile and less specialized role for PGMs in heterotrophic bacteria.

异养细菌中双磷酸化糖对磷酸糖糖化酶的代谢控制。
磷酸葡萄糖互变酶(PGM)对细菌适应性、环境生存、致病性和细胞包膜稳定性至关重要,使其成为对抗细菌感染和传播的潜在新靶点。PGM的功能依赖于激活剂葡萄糖-1,6-二磷酸(葡萄糖-1,6- bp)的初始磷酸化。虽然脊椎动物中葡萄糖-1,6- bp的起源已经得到了很好的研究,但细菌葡萄糖-1,6- bp合成酶最近才在蓝藻中被发现。在这个光自养生物中,二级PGM (SynPGM2)有效地催化果糖-1,6-二磷酸(果糖-1,6- bp)和葡萄糖-1-磷酸或葡萄糖-6-磷酸合成葡萄糖-1,6- bp。来自异养拟杆菌(Bacteroides salyersiae)的同源PGM与SynPGM2属于相同的保守结构域亚家族(cd05800),表现出类似的活性,表明细菌葡萄糖-1,6- bp合成是该特定亚家族的特征。方法:为研究不同异养菌中各种PGM酶的特异性和调控作用,对重组酶进行纯化,并采用酶学分析和高效液相色谱-质谱分析。结果:我们发现葡萄糖-1,6- bp的合成从cd5800亚家族延伸到cd05801、cd05799和cd03089亚家族。来自大肠杆菌(cd05801和cd03089)、屎肠球菌(cd05799)、小肠结肠炎耶尔森菌(cd05801)和嗜胃候选菌(cd05800)的PGMs催化的葡萄糖-1,6- bp依赖性合成反应与SynPGM2相同。值得注意的是,果糖-1,6- bp,一种已知的PGM抑制剂,不能抑制这些细菌的PGM。此外,E. faecium PGM与哺乳动物葡萄糖1,6 BP合成酶属于同一亚家族,可有效催化哺乳动物型1,3-双磷酸甘油依赖性葡萄糖1,6-BP合成反应。结论:所有被调查的异养细菌似乎都利用它们的初级PGM来进行PGM活性和激活剂合成,这表明PGM在异养细菌中具有更广泛的作用,而不是专门的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
2.60%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信