Kalymmatonema gen. nov. (Scytonemataceae, Cyanobacteria): A desert soil crust genus previously identified as Scytonema hyalinum, with description of seven species new to science.

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Markéta Bohunická, Jeffrey R Johansen, Nicole Pietrasiak, Brian M Jusko, Melaku Mesfin, Itzel Becerra-Absalón
{"title":"Kalymmatonema gen. nov. (Scytonemataceae, Cyanobacteria): A desert soil crust genus previously identified as Scytonema hyalinum, with description of seven species new to science.","authors":"Markéta Bohunická, Jeffrey R Johansen, Nicole Pietrasiak, Brian M Jusko, Melaku Mesfin, Itzel Becerra-Absalón","doi":"10.1111/jpy.70058","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous cyanobacterial strains previously identified as Scytonema hyalinum were determined to be phylogenetically distant from the type species of Scytonema, S. hofmannii. Morphological and molecular evidence suggests this distinct clade necessitates placement in a new genus, and we have described Kalymmatonema gen. nov. herein. Kalymmatonema has been demonstrated to exhibit five ribosomal operons, all of which differed in both sequence and secondary structure of conserved helical domains in the 16S-23S internal transcribed spacer rRNA region. Four of these operon copies were highly similar in 16S and 23S rRNA gene sequences, whereas the divergent fifth copy is thought to represent a whole-operon horizontal gene transfer event. Through in-depth analysis, we were able to recognize seven species new to science, the type species K. desertorum sp. nov., K. arcangelii comb. nov., K. chimaera sp. nov., K. ethiopiense sp. nov., K. gypsitolerans sp. nov., K. mateoae sp. nov., and K. oahuense sp. nov. We also created the new combination, K. hyalinum comb. nov., in order to include the original Scytonema hyalinum in this new genus based upon the common morphological feature of a mucilaginous apical cap on the trichomes. Kalymmatonema displays a complex evolution of its ribosomal operons, with evidence not only of horizontal gene transfer but also of internal rearrangements and mobile genetic elements that have transposed the tRNA-containing region of the ITS rRNA region among the four similar operons. Additional investigation of the evolutionary history of this interesting genus will likely lead to a better understanding of the processes shaping ribosomal evolution in cyanobacteria.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.70058","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous cyanobacterial strains previously identified as Scytonema hyalinum were determined to be phylogenetically distant from the type species of Scytonema, S. hofmannii. Morphological and molecular evidence suggests this distinct clade necessitates placement in a new genus, and we have described Kalymmatonema gen. nov. herein. Kalymmatonema has been demonstrated to exhibit five ribosomal operons, all of which differed in both sequence and secondary structure of conserved helical domains in the 16S-23S internal transcribed spacer rRNA region. Four of these operon copies were highly similar in 16S and 23S rRNA gene sequences, whereas the divergent fifth copy is thought to represent a whole-operon horizontal gene transfer event. Through in-depth analysis, we were able to recognize seven species new to science, the type species K. desertorum sp. nov., K. arcangelii comb. nov., K. chimaera sp. nov., K. ethiopiense sp. nov., K. gypsitolerans sp. nov., K. mateoae sp. nov., and K. oahuense sp. nov. We also created the new combination, K. hyalinum comb. nov., in order to include the original Scytonema hyalinum in this new genus based upon the common morphological feature of a mucilaginous apical cap on the trichomes. Kalymmatonema displays a complex evolution of its ribosomal operons, with evidence not only of horizontal gene transfer but also of internal rearrangements and mobile genetic elements that have transposed the tRNA-containing region of the ITS rRNA region among the four similar operons. Additional investigation of the evolutionary history of this interesting genus will likely lead to a better understanding of the processes shaping ribosomal evolution in cyanobacteria.

Kalymmatonema gen. 11 .(丝胞菌科,蓝藻门):沙漠土壤结皮属,以前被确定为丝胞菌,描述了七个科学新物种。
许多以前鉴定为透明丝胞体的蓝藻菌株被确定在系统发育上与丝胞体的模式物种S. hofmannii遥远。形态学和分子证据表明,这一独特的分支必须被置于一个新的属中,我们在这里描述了Kalymmatonema gen. 11。Kalymmatonema已被证明具有5个核糖体操作子,它们在16S-23S内部转录间隔子rRNA区域的保守螺旋结构域的序列和二级结构上都不同。其中四个操纵子拷贝在16S和23S rRNA基因序列上高度相似,而发散的第五个拷贝被认为代表了一个全操纵子水平基因转移事件。通过深入分析,我们能够识别出7种科学上的新种,模式种K. desertorum sp. nov., K. arcangelii comb.。11月,中国K. chimaera,埃塞俄比亚K. ethiopiense,埃及K. gypsitolerans,美国K. mateoae,美国K. oahuense, 11月,我们还创造了新的组合K. hyalinum comb。基于毛状体上黏液状顶帽的共同形态学特征,为了将原始的透明丝胞属包括在这个新属中。Kalymmatonema显示其核糖体操纵子的复杂进化,不仅有水平基因转移的证据,而且还有内部重排和移动遗传元件,这些遗传元件将its rRNA区域的trna包含区域转置于四个类似的操纵子之间。对这个有趣的属的进化史的进一步调查可能会导致更好地理解蓝藻形成核糖体进化的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信