{"title":"Development and characterization of Ag-NPs coated silk sutures: a novel approach to inhibit surgical site infections.","authors":"Sunirmal Bhattacharjee, Debjani Sarkar, Richa Dayaramani, Sweet Naskar, Suraj Sharma, Shounak Sarkhel","doi":"10.1080/1061186X.2025.2534176","DOIUrl":null,"url":null,"abstract":"<p><p>Sutures play an essential role in surgical operations, as they secure and stabilise the edges of wounds to facilitate healing. Nonetheless, microbes on sutures can heighten the likelihood of surgical site infections (SSI) because of pathogen colonisation. This research focused on addressing surgical site infections (SSI) by creating silver nanoparticles (Ag-NPs) through a modified nanoprecipitation technique and utilising them to coat antimicrobial sutures. The physiochemical characteristics of Ag-NPs were confirmed by morphology (through TEM) with a particle size of 26.23 ± 0.234 nm, a PDI of 0.383 ± 0.156, and a zeta potential range of 1.04 ± 0.0.98 mV. Drug content and release studies were conducted for Ag-NP-coated silk sutures. Scanning electron microscopy (SEM) was conducted to determine the coating of Ag-NP-coated silk sutures. Antimicrobial activity was studied using five microorganisms (<i>E. coli, P. aeruginosa, E. faecalis, S. aureus,</i> and <i>T. asperellum</i>) for Ag-NP-coated silk sutures. The cytotoxicity of the Ag-NP-coated silk sutures was investigated using HaCaT for 24 h, which exhibited good cell viability. Finally, this study evaluates the pharmacokinetics of Ag-NP-coated silk sutures in a rat model to determine the pharmacokinetic profile of Ag. Overall, the results indicate that Ag-NP-coated sutures can potentially be used as antimicrobials to diminish or inhibit SSI in postoperative or general surgery patients.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-13"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2534176","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Sutures play an essential role in surgical operations, as they secure and stabilise the edges of wounds to facilitate healing. Nonetheless, microbes on sutures can heighten the likelihood of surgical site infections (SSI) because of pathogen colonisation. This research focused on addressing surgical site infections (SSI) by creating silver nanoparticles (Ag-NPs) through a modified nanoprecipitation technique and utilising them to coat antimicrobial sutures. The physiochemical characteristics of Ag-NPs were confirmed by morphology (through TEM) with a particle size of 26.23 ± 0.234 nm, a PDI of 0.383 ± 0.156, and a zeta potential range of 1.04 ± 0.0.98 mV. Drug content and release studies were conducted for Ag-NP-coated silk sutures. Scanning electron microscopy (SEM) was conducted to determine the coating of Ag-NP-coated silk sutures. Antimicrobial activity was studied using five microorganisms (E. coli, P. aeruginosa, E. faecalis, S. aureus, and T. asperellum) for Ag-NP-coated silk sutures. The cytotoxicity of the Ag-NP-coated silk sutures was investigated using HaCaT for 24 h, which exhibited good cell viability. Finally, this study evaluates the pharmacokinetics of Ag-NP-coated silk sutures in a rat model to determine the pharmacokinetic profile of Ag. Overall, the results indicate that Ag-NP-coated sutures can potentially be used as antimicrobials to diminish or inhibit SSI in postoperative or general surgery patients.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.